Edge-AI (Hardware)

Luis Piñuel

ArTeCS - UCM

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) [EAI case studies](#page-72-0) and Density Conserved Conserved

Section 1

[Intro](#page-1-0)

DNN computational complexity

- Large number of weights (high storage demand)
- Large number of operations (high computational complexity)
	- E.g. for each CNN layer: num. ops / weight $= 2 \times$ FMapSize

Common SW optimizations

- Batch processing
	- Reuse weights for several input Fmaps (i.e. reduce data movements)
- Quantization:
	- Reduce storage/latency/energy per weight MAC
- Network pruning
	- Reduce number of weights without reducing accuracy (e.g. zero weights)
- **•** Efficient kernel processing
	- Matrix-vector, matrix-matrix
	- Stencil
	- ReLU, Sigmoid, Htan

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) EAI case studenties benchmarking [EAI case studies](#page-72-0) of the Specialization Accelerator Architectures Benchmarking EAI case studies of the Specialization of the Sp

Efficient kernel processing

- Algorithmic transformations
	- **•** Strassen multiplication
	- **•** Winograd filter
- **•** Efficient implementation
	- Cache blocking

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) [EAI case studies](#page-72-0) and Development Benchmarking EAI case studies opportunity and coopportunity condensing and coopportunity and coopportunity coopportunity of th

Fully-Connected (FC) Layer

- Matrix-Vector Multiply: \bullet
	- Multiply all inputs in all channels by a weight and sum \bullet

Tiled Fully-Connected (FC) Layer

Matrix multiply tiled to fit in cache and computation ordered to maximize reuse of data in cache

Fully-Connected (FC) Layer

- Implementation: Matrix Multiplication (GEMM)
	- CPU: OpenBLAS, Intel MKL, etc
	- GPU: cuBLAS. cuDNN. etc
- Library will note shape of the matrix multiply and select implementation optimized for that shape.
- Optimization usually involves proper tiling to storage hierarchy

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) EAI case studenties benchmarking [EAI case studies](#page-72-0) opposed to cooppose opposed t

Convolution (CONV) Layer

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) [EAI case studies](#page-72-0) and Departion Accelerator Architectures Benchmarking EAI case studies opposed to cooppose opposed to cooppose opposed to cooppose opposed to c

Flattened 2D Dot Product

Convolution (CONV) Layer

Convolution (CONV) Layer

Convolution (CONV) Layer

Convert to matrix multiply using the Toeplitz Matrix

Strassen

8 multiplications + 4 additions

7 multiplications + 18 additions

• Reduce the complexity of matrix multiplication from $\Theta(N^3)$ to $\Theta(N^{2.807})$ by reducing multiplications

Comes at the price of reduced numerical stability and requires significantly more memory

Image Source: http://www.stoimen.com/blog/2012/11/26/computer-algorithms-strassens-matrix-multiplication/

Winograd $1D - F(2,3)$

- Targeting convolutions instead of matrix multiply
- Notation: F(size of output, filter size)

$$
F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} g_0 \\ g_1 \\ g_2 \end{bmatrix} \qquad = \begin{bmatrix} \mathcal{Y}_0 \\ \mathcal{Y}_1 \end{bmatrix}
$$

6 multiplications $+$ 4 additions

Winograd $1D - F(2,3)$

- Targeting convolutions instead of matrix multiply
- Notation: F(size of output, filter size)

$$
F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} \mathfrak{g}_0 \\ g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{bmatrix}
$$

$$
m_1 = (d_0 - d_2)g_0 \qquad m_2 = (d_1 + d_2)\frac{g_0 + g_1 + g_2}{2}
$$

$$
m_4 = (d_1 - d_3)g_2 \qquad m_3 = (d_2 - d_1)\frac{g_0 - g_1 + g_2}{2}
$$

4 multiplications + 12 additions + 2 shifts

Winograd 2D - F(2x2, 3x3)

• 1D Winograd is nested to make 2D Winograd

Filter

Innut Eman

Output Fmap

=

y₀₁ **Y**₁₀ y_{11}

Original: 36 multiplications

 \star

16 multiplications \rightarrow 2.25 times reduction Winograd:

Winograd Performance Varies

Optimal convolution algorithm depends on convolution layer dimensions

Meta-parameters (data layouts, texture memory) afford higher performance

Using texture memory for convolutions: 13% inference speedup

(GoogLeNet, batch size 1)

Winograd Summary

- Winograd is an optimized computation for convolutions
- It can significantly reduce multiplies $-$ For example, for 3x3 filter by 2.25X
- But, each filter size (and output size) is a different computation.

Tensorflow XLA

Outline of the rest of the lecture

- DNN Hardware Specialization
- **DNN Accelerator Architectures**
- **Benchmarking**
- Edge AI HW case studies:
	- Mobile
	- **•** Embedded devices
	- **•** Autonomous vehicles

Section 2

[HW Specialization](#page-22-0)

End of Moore Law

End of Dennard' scaling

Stagnation of performance

HW specialization is required

Domain-Specific Architectures

DSA Guidelines:

- **4 Dedicated memories:** Use dedicated memories to minimize the distance over which data is moved.
- ² **Larger arithmetic unit:** Invest the resources saved from dropping advanced microarchitectural optimizations into more arithmetic units or bigger memories.
- **3 Easy parallelism:** Use the easiest form of parallelism that matches the domain.
- ⁴ **Smaller data size:** Reduce data size and type to the simplest needed for the domain.
- ⁵ **Domain-specific language:** Use a domain-specific programming language to port code to the DSA.

Section 3

[Accelerator Architectures](#page-28-0)

Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) EAI case studenties benchmarking [EAI case studies](#page-72-0) and condension of the case studies of the condension of the case of the condension of the condension of the c

Memory Access is the Bottleneck

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) EAI case studenties benchmarking [EAI case studies](#page-72-0) and cooperation accelerator Architectures benchmarking EAI case studies of the specialization \sim 000 \bullet 000

Memory Access is the Bottleneck

* multiply-and-accumulate

Worst Case: all memory R/W are DRAM accesses

Example: AlexNet [NIPS 2012] has 724M MACs \bullet \rightarrow 2896M DRAM accesses required

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) EAI case studenties by the Sensilization Accelerator Architectures Benchmarking [EAI case studies](#page-72-0) opportunity of the studies opportunity opportunity of the stud

Leverage Local Memory for Data Reuse

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) EAI case studenties benchmarking [EAI case studies](#page-72-0) and coopool coopool coopool coopool and coopool coopool coopool coopool coopool coopool coopool coopool coopo

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Activations
Filter weigh **Filter weights**

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) EAI case studenties benchmarking [EAI case studies](#page-72-0) of the Specialization Accelerator Architectures Benchmarking EAI case studies of the Specialization 600000000

Convolution (CONV) Layer

Many Input Channels (C)

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Fmap Reuse

CONV and FC layers

Activations Reuse: **Filter weights**

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) EAI case studenties benchmarking [EAI case studies](#page-72-0) oppopulation Accelerator Architectures Benchmarking EAI case studies oppopulation \sim 0000000000000000000000

Convolution (CONV) Layer

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Fmap Reuse

CONV and FC layers

Activations Reuse: **Filter weights**

Reuse: Activations

Filter Reuse

CONV and FC layers (batch size > 1)

Input Fmaps

Reuse: Filter weights

Convolution (CONV) Layer

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) EAI case studenties benchmarking [EAI case studies](#page-72-0) opposition Accelerator Architectures Benchmarking EAI case studies

Types of Data Reuse in DNN

Leverage Parallelism for Higher Performance

Leverage Parallelism for Spatial Data Reuse

Spatial Architecture for DNN

Multi-Level Low-Cost Data Access

* measured from a commercial 65nm process

Multi-Level Low-Cost Data Access

A Dataflow is required to maximally exploit data reuse with the low-cost memory hierarchy and parallelism

* measured from a commercial 65nm process

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) [EAI case studies](#page-72-0) and Department Benchmarking EAI case studies of the Specialization Accelerator Architectures Benchmarking EAI case studies of the Specializati

Dataflow Taxonomy

- **Output Stationary (OS)**
- **Weight Stationary (WS)**
- **Input Stationary (IS)**

Output Stationary (OS)

- **Minimize partial sum R/W energy consumption** \bullet
	- $-$ maximize local accumulation
- Broadcast/Multicast filter weights and reuse activations spatially across the PE array

Variants of Output Stationary

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) EAI case studenties by the Sensilization Accelerator Architectures Benchmarking [EAI case studies](#page-72-0) opposition accelerator Architectures Benchmarking exposition a

Weight Stationary (WS)

- Minimize weight read energy consumption
	- maximize convolutional and filter reuse of weights
- . Broadcast activations and accumulate psums spatially across the PE array.

WS Example: NVDLA (simplified)

WS Example: NVDLA (simplified)

Input Stationary (IS)

- **Minimize activation read energy consumption** \bullet
	- maximize convolutional and fmap reuse of activations
- Unicast weights and accumulate psums spatially across the PE array.

Summary of DNN Dataflows

- Minimizing **data movement** is the key to achieving high \bullet energy efficiency for DNN accelerators
- Dataflow taxonomy: \bullet
	- minimize movement of psums - Output Stationary:
	- Weight Stationary: minimize movement of weights
	- Input Stationary: minimize movement of inputs
- Loop nest provides a compact way to describe various properties of a dataflow, e.g., data tiling in multi-level storage and spatial processing.

Section 4

[Benchmarking](#page-53-0)

Metrics for DNN Hardware

- **Accuracy** \bullet
	- Quality of result for a given task
- \bullet **Throughput**
	- Analytics on high volume data
	- $-$ Real-time performance (e.g., video at 30 fps)
- \bullet Latency
	- $-$ For interactive applications (e.g., autonomous navigation)
- \bullet **Energy and Power**
	- Edge and embedded devices have limited battery capacity
	- Data centers have stringent power ceilings due to cooling costs
- **Hardware Cost** \bullet
	- $-$ \$\$\$

Metrics for DNN Hardware

- **Accuracy** \bullet
	- Difficulty of dataset and/or task should be considered
- **Throughput** \bullet
	- Number of cores (include utilization along with peak performance)
	- Runtime for running specific DNN models
- Latency \bullet
	- Include batch size used in evaluation
- **Energy and Power** \bullet
	- Power consumption for running specific DNN models
	- Include external memory access
- **Hardware Cost** \bullet
	- On-chip storage, number of cores, chip area + process technology

Comprehensive Coverage

- All metrics should be reported for fair evaluation of design tradeoffs
- Examples of what can happen if certain metric is omitted: \bullet
	- Without the accuracy given for a specific dataset and task. one could run a simple DNN and claim low power, high throughput, and low cost – however, the processor might not be usable for a meaningful task
	- Without reporting the off-chip bandwidth, one could build a processor with only multipliers and claim low cost, high throughput, high accuracy, and low chip power – however, when evaluating system power, the off-chip memory access would be substantial

Evaluation Process

The evaluation process for whether a DNN system is a viable solution for a given application might go as follows:

- 1. Accuracy determines if it can perform the given task
- 2. Latency and throughput determine if it can run fast enough and in real-time
- 3. Energy and power consumption will primarily dictate the form factor of the device where the processing can operate
- 4. Cost, which is primarily dictated by the chip area, determines how much one would pay for this solution

MLCommons

- What is MI Commons?
	- A global community (industry & academia) born from MLPerf benchmark effort

Founding Members

/

ML Commons Mission

MLPerf

- . What is MI Perf?
	- ML performance benchmarking effort with wide industry and academic support
	- Several benchmark suites for different targets:
		- **•** Training
		- **o** Training HPC
		- **o** Inference: Datacenter
		- **a** Inference: Mobile
		- Inference: Tiny

MLPerf Training

MLPerf Training benchmark definition

MLPerf Training - divisions

Two divisions with different model restrictions

Closed division: specific model e.g. ResNet $v1.5 \rightarrow$ direct comparisons

Open division: any model \rightarrow innovation

MLPerf Training - Metrics

Metric: time-to-train

Alternative is throughput Easy / cheap to measure

But can increase throughput at cost of total time to train!

Time-to-train (end-to-end) Time to solution! Computationally expensive High variance Least bad choice

MLPerf Training - Workloads

MLPerf v1.0 Training Workloads

MLPerf Inference

MLPerf inference definition

MLPerf Inference - divisions

MLPerf Inference - Scenarios

Four scenarios to handle different use cases

Single stream augmented vision)

Multiple stream (e.g. multiple camera driving assistance)

Server (e.g. translation app)

Offline (e.g. photo sorting app)

MLPerf Inference - Workloads

MLPerf Inference v1.0 Workloads

Datacenter / Edge Inference

Mobile Inference

Mobile: Single Stream, and Offline scenario

Multi-Stream)

TinyMLPerf

Filling the Need

TinyMLPerf - Challenges

- Constrained Device
- No OS or Standard Libraries
- Heterogeneity
- Nascent Field

bird

oat

deer

gob

frog

ship

TinyMLPerf - Benchmarks

Four Benchmarks

Keyword Spotting

Warden, Pete. "Speech commands: A dataset for limited-vocabulary speech recognition." arXiv preprint arXiv: 1804.03209 (2018).

Visual Wake Words

(a) 'Person'

(b) 'Not-person'

Chowdhery, Aakanksha, et al. "Visual wake words dataset." arXiv preprint arXiv:1906.05721 (2019).

Purchit, Harsh, et al. "MIMII dataset: Sound dataset for malfunctioning industrial machine investigation and inspection." arXiv preprint arXiv:1909.09347 (2019).

Monahoe

 t_{42}

Anomaly Detection

hing ÷

String

SEC-man

 $\frac{1}{2}$

Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple
Isvers of features from tiny images." (2009): 7.

Section 5

[EAI case studies](#page-72-0)

Google Edge TPU

- Weight-stationary systolic architecture from Google
- Edge TPU smaller version than original Cloud TPU

Google TPU - mull-add cell

Google TPU - Three input neuron

Out = X0W00 + X1W01 + X2W02 + Bias

Google TPU - systolic array

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) **EAI case students and Benchmarking** [EAI case studies](#page-72-0) odoodoo.

Google TPU - systolic array (Google schematic)

Google Cloud TPU - architecture

Not to Scale

[Intro](#page-1-0) [HW Specialization](#page-22-0) [Accelerator Architectures](#page-28-0) [Benchmarking](#page-53-0) [EAI case studies](#page-72-0) and Development Benchmarking EAI case studies

Google Cloud TPU - architecture

- **Main features**
	- 4 TOPS (Tera Operations per Second)
	- 2 TOPS/W
	- INT8 ops
		- Requires quantization
		- Model compatibility issues
	- [Some Benchmarks results](https://coral.ai/docs/edgetpu/benchmarks/)

Other case studies (next lecture)

- Mobile
	- Apple Neural Engine Group 6
	- Some apple competitors (Huawei, Samsung, . . .) Group 5
- **Embedded devices**
	- ARM AI products with emphasis on Ethos NPUs Group 4
	- Some Chinese accelerator Group 3
- **•** Autonomous vehicles
	- NVIDIA boards & accelerators (DLA, GPU, . . .) Group 2
	- Tesla FSD Group1

Work to do

- Live or recorded presentation:
	- **Main features**
	- **Architecture**
	- How the architecture follow the guidelines for DSA
	- Some metrics (performance, power, etc.)
	- Products were the accelerator is employed
- Short document (2-3 pages) summarizing this information and giving relevant references.