Edge-Al (Theory)

Luis Pinuel

ArTeCS - UCM



Intro
©0000

Section 1

Intro




o Complement the practical part of the course

o Give an overview of the foundational concepts of Edge Al

o Pay special attention to DNN inference processing and
acceleration



Intro
00®00

QOutline

*]
o
(*]
o
o
o
(*]
(*]

Intro: What is Edge Al?
Background Al, ML, DL (aka DNN)
Overview of DNN

Reduce storage/compute

DNN Hardware Specialization

DNN Accelerator Architectures
Benchmarking

Edge Al HW case studies:
o Mobile
o Embedded devices
o Autonomous vehicles



Intro
[ee]eY To)

Prior Knowledge

o Computer Organization (necessary)
o Computer Architecture (recommended)



Intro
ooooe

Schedule

o 21/04: theory lecture
o 28/04: theory lecture

@ 05/05: group presentations
o 15 min presentation + 5 min Q&A



Edge Al

900000000

Section 2

Edge Al




Edge Al
0®0000000

What is Edge Al?

@ Running Al algorithms locally on a hardware device.




Edge Al
00®000000

Why process data locally?

According to Gatner:

“As the volume and velocity of data increases, so too does the
inefficiency of streaming all this information to a cloud or data
center for processing.”

“Around 10% of enterprise-generated data is created and processed
outside a traditional centralized data center or cloud. By 2025, this
figure will reach 75%"




Edge Al
000®00000

What are the main advantages of EAI?

(]

Latency reduction
Reduced costs
e communication, bandwidth, power, ...

Security
Privacy

©

e ©



Edge Al
0000®0000

What can EAI be used for?

@ Surveillance and Monitoring

@ Autonomous vehicles / Control Systems
@ Smart speakers / Voice Assistants

o Point of Sale

o Al applied to loT (aka AloT)



Edge Al
00000®000

What kind of hardware device are employed?

@ Mostly an embedded device
o Very diverse characteristics (performance, power consumption,
costs, etc.) depending on the target application
o High performance/power for autonomous vehicles
o Medium to low performance/power for the vast majority of
applications
@ Most of them based on a SoC with some kind Al hardware
o Accelerator, coprocessor, ISA extensions, . ...



Edge Al
000000e00

What kind of algorithms are employed?

o Mostly Artificial Neural Networks inference
o CNN
o RNN
o But not only ...
o SVM
o KNN
o DT



Edge Al
000000080

What are the general steps to design an Al system?

o
o
o
o
*]
(*]

Identify the problem.

Prepare the data.

Choose the algorithms.

Train the algorithms.

Choose a programming language.
Run on a selected platform.



Edge Al
00000000e

What are specific/critical steps to design an Edge Al

system?

o Carefully select the hardware device and the algorithms to meet
the application constraints (latency, cost, power, cooling, ...)

o Map the algorithm to the selected platform
o Inference framework
o Libraries

o Fine-tune the system



Background: Al, ML, DL

9000000000000

Section 3

Background: Al, ML, DL




Background: Al, ML, DL O
O 0@00000000000 [e

Artificial Intelligence

“The science and engineering of creating
intelligent machines”
- John McCarthy, 1956




Background: Al, ML, DL

O 000000000000

Artificial Intelligence

Machine Learning

“Field of study that gives computers the ability
to learn without being explicitly programmed”

— Arthur Samuel, 1959




Background: Al, ML, DL O

O 000e000000000

Artificial Intelligence
Machine Learning

Brain-Inspired

An algorithm that takes its basic
functionality from our understanding
of how the brain operates



Background: Al, ML, DL
0000®00000000

How Does the Brain Work?

impulses carried
toward cell body

) branches
of axon

axon

impulses carried
away from cell body

cell body

» The basic computational unit of the brain is a neuron
-> 86B neurons in the brain

» Neurons are connected with nearly 10" — 1015 synapses

* Neurons receive input signal from dendrites and produce
output signal along axon, which interact with the dendrites of
other neurons via synaptic weights

» Synaptic weights — learnable & control influence strength



Background: Al, ML, DL

00 00000e0000000

Artificial Intelligence
Machine Learning

Brain-Inspired



—yyeydbeve

e

T

(®)

Z

S

QO o

: L e

=3 =l o}

25 5 O cm

15 IS a © 7

Bl 2o

dnou.._“. .4ap

35 I8 c o £

= m..nlv.a

< = e X

50 m = w

m e o o
=
o
w




Background: Al, ML, DL

00 0000000e00000

Artificial Intelligence
Machine Learning

Brain-Inspired

Neural
Networks



Background: Al, ML, DL
0000000080000

Neural Networks: Weighted Sum

Z wo

>@ synapse
axon from a neuron
~ WoTo

cell body

] (Zwiwi + b)
Zwimi +b :

output axon

activation
function




Input Layer

Hidden Layer



Background: Al, ML, DL

00 0000000000e00

Artificial Intelligence

Machine Learning

Brain-Inspired

Neural
Networks

Deep
Learning




Background: Al, ML, DL
00000000000 e0

What is Deep Learning?

XC90”



Background: Al, ML, DL

000000000000

Why DL is so popular?

New ML

Big Data GPU
Techniques

Availability Acceleration

350M images

facebook uploaded per
day

, 2.5 Petabytes
Walmart < of customer
data hourly

300 hours of

You video uploaded
every minute




Overview of DNN

9000000000000 000O0000O0O000000000000

Section 4

Overview of DNN




Terminology - Neurons

Neurons

Output Layer

Input Layer
Hidden Layer



Output Layer
Input Layer

Hidden Layer



Each synapse has a weight for neuron activation

3
Y, = activation(E W, x X,-)

i=1

Input Layer

Hidden Layer



Overview of DNN
0000@0000000000000000000000000000

Terminology - Weight Sharing

Weight Sharing: multiple synapses use the same weight value

iw’jxxi)

i=1

Y, = activation(

Input Layer

Hidden Layer



Overview of DNN
00000e000000000000000000000000000

Terminology - Layers

Layer 1 L1 Neuron outputs
L1 Neuron inputs / a.k.a. Activations

e.g. image pixels

Input Layer
Hidden Layer



L2 Input
Activations Layer 2

L2 Output
Activations

y

Output Layer

Input Layer
Hidden Layer



Overview of DNN
0000000e0000000000000000000000000

Terminology - Connection pattern

Fully-Connected: all i/p neurons connected to all o/p neurons

\ Sparsely-Connected

Input Layer

Hidden Layer



Overview of DNN
00000000e000000000000000000000000

Terminology - Connection pattern

Feed Forward Feedback

\ \

Output Layer
Input Layer

Hidden Layer



Overview of DNN
000000000e00000000000000000000000

Popular Types of DNNs

(*]

Fully-ConnectedNN

o feed forward, a.k.a. multilayer perceptron (MLP)
ConvolutionalNN(CNN)

o feed forward, sparsely-connected w/ weight sharing
RecurrentNN(RNN)

o feedback
LongShort-TermMemory(LSTM)

o feedback + storage

(7]

(4]



Overview of DNN
0000000000e0000000000000000000000

Inference vs. Training

o Training: Determine weights (i.e. learn)
o Supervised:
o Training set has inputs and outputs, i.e., labeled
o Unsupervised / Self-Supervised:
o Training set is unlabeled
o Semi-supervised:
o Training set is partially labeled
o Reinforcement:
o Output assessed via rewards and punishments

o Inference: Apply weights to determine output



Overview of DNN
00000000000e000000000000000000000

Backpropagation

o Training consist on 2 phases:
o Forward propagation: i.e. weighted sum
o Back-propagation: algorithm that computes the gradient in
weight space with respect to a loss function.

9a®




Overview of DNN

000000000000 @O00000000000000000000

Deep Convolutional Neural Networks

Modern Deep CNN: 5 — 1000 Layers
A

\
Low-Level High-Level
Features > - % Features ->E->Classes
;

1 -3 Layers




Overview of DNN
0000000000000e0000000000000000000

Deep Convolutional Neural Networks

Low-Level High-Level
Features > - % Features *E*CIasses
== . EEE

Convolution| | Activation

& L D2




Overview of DNN

0000000000000V e000000000000000000

Deep Convolutional Neural Networks

Low-Level High-Level
Features > -~ % Features > Classes

- N

Fully Activation

Connected | |
= 1L




Overview of DNN
000000000000000e00000000000000000

Deep Convolutional Neural Networks

Optional layers in between
CONV and/or FC layers

High-Level
Features *E*Classes

Normalization Pooling

"8 =




Overview of DNN
0000000000000000e0000000000000000

Deep Convolutional Neural Networks

CONV | NORM [ POOL | CONV FC
Layer @ Layer | Layer @ Layer Layer

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption




Overview of DNN
00000000000000000e000000000000000

Convolution (CONV) Layer

a plane of input activations
a.k.a. input feature map (fmap)

filter (weights)
t

b

|




Overview of DNN
000000000000000000e00000000000000

Convolution (CONV) Layer

input fmap

filter (weights)

il

«— § —

Element-wise
Multiplication



Overview of DNN
0000000000000000000e0000000000000

Convolution (CONV) Layer

input fmap output fmap
filter (weights) ' - — :: t;l:t?:rtn
o
o

Element-wise Partial Sum (psum)
Multiplication Accumulation



Overview of DNN

0000000000000 0000000e000000000000

Convolution (CONV) Layer

input fmap output fmap

Sliding Window Processing

an output
activation



Overview of DNN
000000000000000000000e00000000000

Convolution (CONV) Layer

input fmap

filter P output fmap
c”
1 H
R —1H & l
|

«— § — — W — «— F —

Many Input Channels (C)



Overview of DNN
0000000000000000000000e0000000000

Convolution (CONV) Layer

many
filters (M)

«—x—
X,

input fmap

output fmap

«— F —

Many
Output Channels (M)



Overview of DNN

0000000000000 0000000000e000000000

Convolution (CONV) Layer

Many
Input fmaps (N) Many
filters Output fmaps (N)
M7 K
Cf." X Y :
- ' } \ I
R E
} la




Overview of DNN
000000000000000000000000e00000000

CNN Decoder Ring

* N — Number of input fmaps/output fmaps (batch size)
* C — Number of 2-D input fmaps [filters (channels)

* H - Height of input fmap (activations)

+ W — Width of input fmap (activations)

* R - Height of 2-D filter (weights)

* S — Width of 2-D filter (weights)

* M — Number of 2-D output fmaps (channels)

* E - Height of output fmap (activations)

* F — Width of output fmap (activations)



Overview of DNN
0000000000000000000000000e0000000

CONV Layer Tensor Computation

Output fmaps (O) Input fmaps (I)
Biases (B) Filter weights (W)
¢ R-1S8-1C-1
O[n][m|[z][y] = Actlvatlon(B |+ I[n|[k][Uz +i|[Uy + j] x W[m][k][{][4]),
- i=0 j=0 k=0

0<n<NO<Mm<MOL<y<E0<z<F,

E=(H-R+U)/UF=(W-S+U)/U.

Shape Parameter | Description

N fmap batch size
M # of filters / # of output fmap channels
C # of input fmap/filter channels

HIW input fmap height/width

RIS filter height/width

E/F output fmap height/width
U convolution stride




Overview of DNN
00000000000000000000000000e000000

CONV Layer Implementation

Naive 7-layer for-loop implementation:

for (n=0; n<N; n++) {
for (m=0; mM;
or (m=0; m<M; m+) { for each output fmap value

for (x=0; x<F; x++) {
for (y=0; y<E; y++) {

o[nI[m1[x1Ly] = B[m];

for (i=0; i<R; i++) {

convolve for (1763 j<s; I+4) {
a window for (k=0; k<C; k++) {

and apply ) o[n][m][xI[y] += I[n][k][Ux+i][Uy+3] x WIm][KI[11[]1;
activation }

}
) o[n][m][x][y] = Activation(O[n][m][x]1[y1);
}
}



Overview of DNN
000000000000000000000000000e00000

Traditional Activation Functions

Sigmoid
1
/__
0 -!/
-1
-1 0 1

y=1/(1+eX)

Hyperbolic Tangent
1
0

-1 |
-1 0 1

y=(ex-eX)/(e*+eX)



Overview of DNN
000000000000000000000000000080000

Modern Activation Functions

Rectified Linear Unit

(ReLU) Leaky ReLU Exponential LU
1 1 1
0 0 0
-1 1 P
_1 0 1 _1 0 1 _1 0 1

X, x20

y=max(0,Xx) y=max(ax, x) y={ a(ex-1),x<0

a = small const. (e.g. 0.1)



filters input fmaps output fmaps




Overview of DNN
000000000000000000000000000000e00

Fully-Connected (FC) Layer

* Height and width of output fmapsare 1 (E=F =1)
* Filters as large as input fmaps (R=H, S = W)
* Implementation: Matrix Multiplication

Filters Input fmaps Output fmaps
«— CHW — I «— N —— «— N ——
CHW
M X 1 M




Overview of DNN
0000000000000000000000000000000e0

Pooling (POOL) Layer

* Reduce resolution of each channel independently

» Overlapping or non-overlapping = depending on stride
Max pooling

2x2 pooling, stride 2

23 9
10 6

Average pooling

Increases translation-invariance and noise-resilience



Overview of DNN
00000000000000000000000000000000e

Normalization (NORM) Layer

« Batch Normalization (BN)

— Normalize activations towards mean=0 and std.
dev.=1 based on the statistics of the training dataset

— put in between CONV/FC and Activation function

Activation

Believed to be key to getting high accuracy and
faster training on very deep neural networks.

Convolution

CONV - =
Layer T




Reduce storage/compute

9000000000000 0

Section 5

Reduce storage/compute




Reduce storage/compute
0®000000000000

Approaches

* Reduce size of operands for storage/compute
— Floating point > Fixed point
— Bit-width reduction

— Non-linear quantization

* Reduce number of operations for storage/compute
— Exploit Activation Statistics (Compression)
— Network Pruning
— Compact Network Architectures



Reduce storage/compute
00®00000000000

What is quantization?

* Precision refers to the number of levels
— Number of bits = log, (number of levels)

* Quantization: mapping data to a smaller set of levels
— Linear, e.g., fixed-point
— Non-linear
« Computed (e.g., floating point, log-domain)
* Table lookup (e.g., learned)

Objective: Reduce size to improve speed and/or reduce energy
while preserving accuracy



Reduce storage/compute

000@0000000000

Cost of Operations

Operation: Energy | Relative Energy Cost | Area | Relative Area Cost
(pJ) (um?)
8b Add 0.03 36
16b Add 0.05 67
32b Add 0.1 137
16b FP Add 0.4 1360
32b FP Add 0.9 4184
8b Mult 0.2 282
32b Mult 3.1 3495
16b FP Mult 1.1 1640
32b FP Mult 3.7 7700
32b SRAM Read (8KB) 5 N/A
32b DRAM Read 640 N/A

1 10 102 10%8 104 1 10 102 108



Reduce storage/compute

0000e@000000000

Number representation

1 8 23 Range Accuracy
1038 - 1038 .000006%
1 5 10
LS E v | 6x105- 6x104 .05%
1 31
nz2 - G - >qe %
1 15
Int16 0-6xi0t %
1 7

s M 0-127 %



Reduce storage/compute
00000®00000000

Floating Point -> Fixed Point

Floating Point

sign exponent (8-bits) mantissa (23-bits)
SCaLLL N 1 0] 1/0]o[[o]1/0]olololololololol1]0l1l0lolololololololol1lolo
-1.112934 x 101 s=1 e=74 m=20484

Fixed Point
sign mantissa (7-bits)
h——t——
8-bit o|1]1]olol4]1/0

fixed ——
integer fractional

(4-bits)  (3-bits)
12.75 s=0 m=102



Reduce storage/compute
000000 ®0000000

FP [-1,1) -> INT8 [0,256)

250 4

200 4

int

100 -075 —0.50 025 000 025 050 075 100

float



FP [-1,1) -> INT8 [-128,128)

((}.18120981 0.29043840) (0.77412377) - (0.28346319)

0.49722083  0.22141714 0.49299395)  \ 0.49407474

T p iy L
T {1285J 16384

. —0.2911377
(_634 235) (63) - (8001) (048834229 )



Reduce storage/compute
00000000e800000

N-bit precision

For no loss in precision, M is determined based on largest
filter size (in the range of 10 to 16 bits for popular DNNs)

2N+M-bits

Weight
(N-bits)

2N-bits Quantize I ,. Output
Accumulat/? | to N-bits (N-bits)

Activation N x N
(N-bits) *  muitiply



Reduce storage/compute
[e]eeleToloTeleleY Yololele}

FP formats for DL

o FP32. the standard format for DNN

o FP16: little HW support, only useful for GPUs of for saving
storage

o INT8: saves storage/power & improves speedup but significant
accuracy loss

o New formats are needed

o BFLOAT16
o TF32
o Posit?



Reduce storage/compute
0000000000e000

BFLOAT16

@ Brain Floating Point Format (Google)

& exponent fraction
Ea

8 bits 7 bits
slelefefelefe e [mfmfufmfululn]

bfloat16

range: ~1e~* to ~3e%*

8 bits. 23 bits
[ e ] & e | e e | ] e [ |’ e~

float32
range: ~le * to ~3e*

0 bits
(s & e | e | e 1 ] e

float1é
range: ~5.9e  to 6.5¢*




Reduce storage/compute
00000000000 e00

o Tensor Float 32

Sign Range Precision
o | sors S
mzlnum
rososrow s v | SN
TFi2 Prectsian

FP16



Reduce storage/compute
0000000000008

Quantization strategies

o Post-training
o Train de model using float32 weights and inputs
o Then quantize weights
o Simple to apply, but higher accuracy loss
o Quantization-aware training
o Quantize the weights (or even activations) during training
o This has the best result, but it is more involved



mpute

ge/ col

Reduce stora
0000000000008

after pruning

-—->
-—->

n
Q
n
Q.
@©
c
>
n

pruning
neurons

o

£
c
S
—
a

eT0]
=
[
>
s
o
Y
—
(@)
=
)
[0}
=



	Intro
	Edge AI
	Background: AI, ML, DL
	Overview of DNN
	Reduce storage/compute

