Edge-AI (Theory)

Luis Piñuel

ArTeCS - UCM

 Intro
 Edge Al
 Background: Al, ML, DL

 •0000
 00000000
 000000000

Reduce storage/compute

Section 1

Intro

Goals

- Complement the practical part of the course
- Give an overview of the foundational concepts of Edge AI
- Pay special attention to DNN inference processing and acceleration

Outline

- Intro: What is Edge AI?
- Background AI, ML, DL (aka DNN)
- Overview of DNN
- Reduce storage/compute
- DNN Hardware Specialization
- DNN Accelerator Architectures
- Benchmarking
- Edge AI HW case studies:
 - Mobile
 - Embedded devices
 - Autonomous vehicles

 Intro
 Edge AI
 Background: AI, ML, DL

 00000
 00000000
 000000000

Prior Knowledge

- Computer Organization (necessary)
- Computer Architecture (recommended)

Schedule

- 21/04: theory lecture
- 28/04: theory lecture
- 05/05: group presentations
 - 15 min presentation + 5 min Q&A

 Intro
 Edge AI
 Background: AI, ML, DL

 00000
 000000000
 0000000000

Reduce storage/compute

Section 2

Edge Al

Reduce storage/compute

What is Edge AI?

• Running AI algorithms locally on a hardware device.

Why process data locally?

According to Gatner:

"As the volume and velocity of data increases, so too does the inefficiency of streaming all this information to a cloud or data center for processing."

"Around 10% of enterprise-generated data is created and processed outside a traditional centralized data center or cloud. By 2025, this figure will reach 75%"

Reduce storage/compute

What are the main advantages of EAI?

- Latency reduction
- Reduced costs
 - communication, bandwidth, power, ...
- Security
- Privacy

 tro
 Edge Al
 Background: Al, ML, DL

 0000
 00000000
 0000000000

Reduce storage/compute

What can EAI be used for?

- Surveillance and Monitoring
- Autonomous vehicles / Control Systems
- Smart speakers / Voice Assistants
- Point of Sale
- Al applied to IoT (aka AloT)

What kind of hardware device are employed?

- Mostly an embedded device
- Very diverse characteristics (performance, power consumption, costs, etc.) depending on the target application
 - High performance/power for autonomous vehicles
 - Medium to low performance/power for the vast majority of applications
- Most of them based on a SoC with some kind AI hardware
 - Accelerator, coprocessor, ISA extensions,

Edge Al Background: AI, ML, DL

Reduce storage/compute

What kind of algorithms are employed?

- Mostly Artificial Neural Networks inference
 - CNN
 - RNN
- But not only ...
 - SVM
 - KNN
 - DT

Edge Al

Background: AI, ML, DL

Overview of DNN

Reduce storage/compute

What are the general steps to design an AI system?

- Identify the problem.
- Prepare the data.
- Choose the algorithms.
- Train the algorithms.
- Choose a programming language.
- Run on a selected platform.

- Carefully select the hardware device and the algorithms to meet the application constraints (latency, cost, power, cooling, ...)
- Map the algorithm to the selected platform
 - Inference framework
 - Libraries
- Fine-tune the system

Overview of DNN Reduction Overview of DNN Re

Section 3

Background: AI, ML, DL

Reduce storage/compute

Artificial Intelligence

 Intro
 Edge Al
 Background: Al, ML, DL

 00000
 000000000
 000000000000

Reduce storage/compute

AI and Machine Learning

Overview of DNN R

Reduce storage/compute

Brain-Inspired Machine Learning

Edge Al

Background: AI, ML, DL

Overview of DNN

Reduce storage/compute

How Does the Brain Work?

- The basic computational unit of the brain is a neuron \rightarrow 86B neurons in the brain
- Neurons are connected with nearly 10¹⁴ 10¹⁵ synapses
- Neurons receive input signal from dendrites and produce output signal along axon, which interact with the dendrites of other neurons via synaptic weights
- Synaptic weights learnable & control influence strength

Edge Al

Background: AI, ML, DL

Reduce storage/compute

Spiking-based Machine Learning

 Intro
 Edge Al
 Background: Al, ML, DL

 00000
 000000000
 0000000000

Reduce storage/compute

Spiking Architecture

- Brain-inspired
- Integrate and fire
- Example: IBM TrueNorth

Machine Learning with Neural Networks

Reduce storage/compute

Neural Networks: Weighted Sum

Reduce storage/compute

Many Weighted Sums

Reduce storage/compute

Deep Learning

Reduce storage/compute

What is Deep Learning?

Reduce storage/compute

Why DL is so popular?

Section 4

Overview of DNN

Reduce storage/compute

Terminology - Neurons

Reduce storage/compute

Terminology - Synapses

Reduce storage/compute

Terminology - Synapses

Each synapse has a weight for neuron activation

Reduce storage/compute

Terminology - Weight Sharing

Weight Sharing: multiple synapses use the same weight value

Reduce storage/compute

Terminology - Layers

Reduce storage/compute

Terminology - Layers

Reduce storage/compute

Terminology - Connection pattern

Fully-Connected: all i/p neurons connected to all o/p neurons

Reduce storage/compute

Terminology - Connection pattern

Popular Types of DNNs

- Fully-ConnectedNN
 - feed forward, a.k.a. multilayer perceptron (MLP)
- ConvolutionalNN(CNN)
 - feed forward, sparsely-connected w/ weight sharing
- RecurrentNN(RNN)
 - feedback
- LongShort-TermMemory(LSTM)
 - feedback + storage

Inference vs. Training

- Training: Determine weights (i.e. learn)
 - Supervised:
 - Training set has inputs and outputs, i.e., labeled
 - Unsupervised / Self-Supervised:
 - Training set is unlabeled
 - Semi-supervised:
 - Training set is partially labeled
 - Reinforcement:
 - Output assessed via rewards and punishments
- Inference: Apply weights to determine output

Backpropagation

- Training consist on 2 phases:
 - Forward propagation: i.e. weighted sum
 - Back-propagation: algorithm that computes the gradient in weight space with respect to a loss function.

Reduce storage/compute

Deep Convolutional Neural Networks

Convolutions account for more than 90% of overall computation, dominating **runtime** and **energy consumption**

Reduce storage/compute

Convolution (CONV) Layer

a plane of input activations a.k.a. input feature map (fmap)

Reduce storage/compute

Reduce storage/compute

Reduce storage/compute

Reduce storage/compute

Convolution (CONV) Layer

Many Input Channels (C)

Reduce storage/compute

Reduce storage/compute

CNN Decoder Ring

- N Number of input fmaps/output fmaps (batch size)
- C Number of 2-D input fmaps /filters (channels)
- H Height of input fmap (activations)
- W Width of input fmap (activations)
- R Height of 2-D filter (weights)
- S Width of 2-D filter (weights)
- M Number of 2-D output fmaps (channels)
- E Height of output fmap (activations)
- F Width of output fmap (activations)

Reduce storage/compute

CONV Layer Tensor Computation

$$0 \le n < N, 0 \le m < M, 0 \le y < E, 0 \le x < F,$$

$$E = (H - R + U)/U, F = (W - S + U)/U.$$

Shape Parameter	Description
N	fmap batch size
M	# of filters / # of output fmap channels
C	# of input fmap/filter channels
H/W	input fmap height/width
R/S	filter height/width
E/F	output fmap height/width
U	convolution stride

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

Reduce storage/compute

Traditional Activation Functions

Overview of DNN F

Reduce storage/compute

Modern Activation Functions

e Al Background: Al, ML, DL

Reduce storage/compute

FC Layer – from CONV Layer POV

Reduce storage/compute

Fully-Connected (FC) Layer

- Height and width of output fmaps are 1 (E = F = 1)
- Filters as large as input fmaps (R = H, S = W)
- Implementation: Matrix Multiplication

Pooling (POOL) Layer

Background: AI, ML, DL

- · Reduce resolution of each channel independently
- Overlapping or non-overlapping \rightarrow depending on stride

Overview of DNN

Reduce storage/compute

Increases translation-invariance and noise-resilience

Normalization (NORM) Layer

Background: AI, ML, DL

Edge Al

- Batch Normalization (BN)
 - Normalize activations towards mean=0 and std.
 dev.=1 based on the statistics of the training dataset
 - put in between CONV/FC and Activation function

Overview of DNN

Reduce storage/compute

Believed to be key to getting high accuracy and faster training on very deep neural networks.

Reduce storage/compute

Section 5

Reduce storage/compute

Approaches

- <u>Reduce size</u> of operands for storage/compute
 - Floating point \rightarrow Fixed point
 - Bit-width reduction
 - Non-linear quantization
- <u>Reduce number</u> of operations for storage/compute
 - Exploit Activation Statistics (Compression)
 - Network Pruning
 - Compact Network Architectures

What is quantization?

- Precision refers to the number of levels
 - Number of bits = \log_2 (number of levels)
- Quantization: mapping data to a smaller set of levels
 - Linear, e.g., fixed-point
 - Non-linear
 - Computed (e.g., floating point, log-domain)
 - Table lookup (e.g., learned)

Objective: Reduce size to improve speed and/or reduce energy while preserving accuracy

Reduce storage/compute

Cost of Operations

Operation:	Energy (pJ)	Relative Energy Cost	Area (μm²)	Relative Area Cost
8b Add	0.03		36	
16b Add	0.05		67	
32b Add	0.1		137	
16b FP Add	0.4		1360	
32b FP Add	0.9		4184	
8b Mult	0.2		282	
32b Mult	3.1		3495	
16b FP Mult	1.1		1640	
32b FP Mult	3.7		7700	
32b SRAM Read (8KB)	5		N/A	
32b DRAM Read	640		N/A	
		1 10 10 ² 10 ³ 10 ⁴		1 10 10 ² 10 ³

 Intro
 Edge Al
 Background: Al, ML, DL

 00000
 000000000
 0000000000

Reduce storage/compute

Number representation

Reduce storage/compute

Floating Point -> Fixed Point

Floating Point

Fixed Point

8-bit fixed 0 1 1 0 1 1 0integer fractional (4-bits) (3-bits) 12.75 s = 0 m = 102 ge Al Background: Al, ML, DL

Overview of DNN R

Reduce storage/compute

FP [-1,1) -> INT8 [0,256)

 Edge AI
 Background: AI, ML, DL
 Overview of DNN

 000000000
 00000000000
 00000000000

FP [-1,1) -> INT8 [-128,128)

$$\begin{pmatrix} -0.18120981 & -0.29043840\\ 0.49722983 & 0.22141714 \end{pmatrix} \begin{pmatrix} 0.77412377\\ 0.49299395 \end{pmatrix} = \begin{pmatrix} -0.28346319\\ 0.49407474 \end{pmatrix}$$

$$x \mapsto \left\lfloor 128 \frac{x}{a} \right\rfloor \qquad x$$

 $\begin{pmatrix} -24 & -38\\ 63 & 28 \end{pmatrix} \begin{pmatrix} 99\\ 63 \end{pmatrix} = \begin{pmatrix} 4770\\ 8001 \end{pmatrix}$

$$x \mapsto \frac{ax}{16384}$$

$$\begin{pmatrix} -0.2911377\\ 0.48834229 \end{pmatrix}$$

N-bit precision

FP formats for DL

- FP32. the standard format for DNN
- FP16: little HW support, only useful for GPUs of for saving storage
- INT8: saves storage/power & improves speedup but significant accuracy loss
- New formats are needed
 - BFLOAT16
 - TF32
 - Posit?

BFLOAT16

• Brain Floating Point Format (Google)

• Tensor Float 32

Quantization strategies

Post-training

- Train de model using float32 weights and inputs
- Then quantize weights
- Simple to apply, but higher accuracy loss

• Quantization-aware training

- Quantize the weights (or even activations) during training
- This has the best result, but it is more involved

Intro Edge Al Background: Al, ML, DL

Reduce storage/compute

Network pruning

