Week1: Getting Started with Jetson Nano Developer Kit Edge Computing

C. García garsanca@ucm.es

May 4, 2022

"NVIDIA-Jetson: Hello AI World", https://github.com/dusty-nv/jetson-inference/ blob/master/docs/aux-docker.md

Intro 00000	Setup Container 000000000000	Setup ML Container

Outline

- 2 Setup Container
- 3 Installing PyTorch
- 4 Setup ML Container

C. García garsanca@ucm.es

Week1: Getting Started with Jetson Nano Developer Kit

Setup Jetson-Nano

In theory SD Card has been flashed with a installation (see Slides Week1-Setup_JetsonNano-install)

Credentials

- User name: nano
- User password: nano_pass

Using Camera (CSI Camera)

CSI camera is the Rpi Camera connected through ribbon cable

- More info could be consulted in Jetson Nano 2GB Developer Kit User Guide
- To check CSI camera, you can run nvgstcapture-1.0, which will start capture and preview display it on the screen:

Terminal #1

```
nano@jetson-nano:-$ nvgstcapture-1.0
Encoder null, cannot set bitrate!
Encoder Profile = High
Supported resolutions in case of ARGUS Camera
(2) : 640x480
(3) : 1280x720
(4) : 1920x1080
.....
```


Using Camera (CSI Camera)

- Check rotation
- This example command will rotate the image 180 degrees (vertical flip)

Terminal #1

nano@jetson-nano:~\$ nvgstcapture-1.0 --orientation 2

Take a picture and save to disk

- 1 Connect CSI camera
- Execute in a shell the command *nvgstcapture-1.0* –automate –capture-auto
- 3 Open File with eog nvcamtest_XX.jpg

Capture a video and save to disk

- 1 Connect CSI camera
- Execute in a shell the command *nvgstcapture-1.0 -mode=2* -automate -capture-auto
- 3 Application will record 10 seconds of video
- 4 Play File recorded with totem nvcamtest_XX.mp4

	Setup Container ●000000000000	Setup ML Container
Intro		

- There are several pre-configured containers to be able to use the Jetson-Nano board
- The most common are related to their use for artificial intelligence and machine learning

C. García garsanca@ucm.es

Week1: Getting Started with Jetson Nano Developer Kit

Machine Learning Containers for Jetson and JetPack

Extracted from

https://github.com/dusty-nv/jetson-containers

- Hosted on NVIDIA GPU Cloud (NGC) are the following Docker container images for machine learning on Jetson:
 - I4t-ml
 - I4t-pytorch
 - I4t-tensorflow

Machine Learning Container

- The I4t-ml docker image contains TensorFlow, PyTorch, JupyterLab, and other popular ML and data science frameworks such as scikit-learn, scipy, and Pandas pre-installed in a Python 3.6 environment
 - Latest 14t-ml:r32.6.1-py3
 - TensorFlow 1.15.5
 - PyTorch v1.9.0
 - torchvision v0.10.0
 - torchaudio v0.9.0
 - onnx 1.8.0
 - CuPy 9.2.0
 - numpy 1.19.5
 - numba 0.53.1
 - OpenCV 4.5.0 (with CUDA)
 - pandas 1.1.5
 - ---- 1 E /

C. García garsanca@ucm.es

Neek1: Getting Started with Jetson Nano Developer Ki

Pytorch Container

- The I4t-pytorch docker image contains PyTorch and torchvision pre-installed in a Python 3.6 environment
 - Lastest 14t-pytorch:r32.6.1-pth1.9-py3
 - PyTorch v1.9.0
 - torchvision v0.10.0
 - torchaudio v0.9.0

Running Docker Container

- Pre-built Docker container images for this project are hosted on DockerHub
- These containers use the l4t-pytorch base container, so support for transfer learning / re-training is already included

Inference instructions

Follow the github https://github.com/dusty-nv/ jetson-inference/blob/master/docs/aux-docker.md

C. García garsanca@ucm.es

Week1: Getting Started with Jetson Nano Developer Kit

Launching the Container

- It's recommended to use the script docker/run.sh script to run the container
 - docker/run.sh will automatically pull the correct container tag from DockerHub based on your currently-installed version of JetPack-L4T
 - It also mount the appropriate data directories and devices so that you can use cameras/display/ect from within the container
 - More DNN models available in https: //github.com/dusty-nv/jetson-inference/blob/ master/docs/building-repo-2.md#downloading-models

Launching the Container

IMPORTANT: if you are using CSI (Rpi Camera): -volume /tmp/argus_socket:/tmp/argus_socket

Terminal #1

```
nano@jetson-nano:-$ git clone --recursive https://github.com/dusty-nv/jetson-inference
Cloning into jetson-inference...
remote: Enumerating objects: 20861, done.
....
nano@jetson-nano:-$ cd jetson-inference/
nano@jetson-nano:-/jetson-inference$ docker/run.sh --volume /tmp/argus_socket:/tmp/argus_socket
reading L4T version from /etc/nv_tegra_release
L4T BSP Version: L4T R32.6.1
[sudo] password for nano:
size of data/networks: 79397 bytes
.....
```


Mount data volumes

- For reference, the following paths automatically get mounted from your host device into the container:
 - *jetson-inference/data* (stores the network models, serialized TensorRT engines, and test images)
 - jetson-inference/python/training/classification /data (stores classification training datasets)
 - jetson-inference/python/training/classification/models (stores classification models trained by PyTorch)
 - jetson-inference/python/training/detection/ssd/data (stores detection training datasets)
 - jetson-inference/python/training/detection/ssd/models (stores detection models trained by PyTorch)

Once the container is up and running, you can then run example programs from the tutorial like normal inside the container:

Terminal #1

root@jetson-nano:/jetson-inference# cd build/aarch64/bin root@jetson-nano:/jetson-inference/build/aarch64/bin# ./video-viewer root@jetson-nano:/jetson-inference/build/aarch64/bin# ./imagenet images/jellyfish.jpg images/tes root@jetson-nano:/jetson-inference/build/aarch64/bin# ./detectnet images/peds_0.jpg images/tes/ # (press Ctrl+D to exit the container)

Note that video-viewer catches the image from webcam

Note that imagenet app classifies the image *jellyfish.jpg* as a jellyfish and store the image solution in the path *data/images/test* with a confidence of 99.85%

Note that detectnet app detects four persons with a confidence of 70.0%, 97.6%, 98.4% and 86.1% and store the image solution in path *data/images/test*

Download other models

Ŧ				nano@jetson-	nano: ~/jetso	n-inference		• •
File	Edit	Tabs	Help					
na	no@je	tso		nano@jetso				
Key	/s:			Mode	l Downloader			1
1	ii Na Space Enter	vigate to Sel to Cor	e Menu lect M ntinue	odels				
Г	C	11	Imag	e Recognition	- all models	(2.2 GB)		
	l	*]3	>	GoogleNet		(244 MB) (54 MB)		
	l	*]5	>	GoogleNet-12 ResNet-18		(42 MB) (47 MB)		
	[[]6]7	>	ResNet-50 ResNet-101		(102 MB) (179 MB)		
	[[] 8] 9	>	ResNet-152 VGG-16		(242 MB) (554 MB)		
	[] 10	>	VGG-19		(575 MB)	18	*
				< <mark>0</mark> K >	< Qu:	it >		-
۱ <u> </u>								

Terminal #1

```
nano@jetson-nano:-$ cd jetson-inference/tools
nano@jetson-nano:-/jetson-inference$ ./download-models.sh
.....
```


Installing PyTorch

- If you are running the Docker Container, it should already be installed on your Jetson
- Otherwise you can install it

Terminal #1

nano@jetson-nano:-\$ cd jetson-inference/build nano@jetson-nano~/jetson-inference/build\$./install-pytorch.sh

C. García garsanca@ucm.es

Week1: Getting Started with Jetson Nano Developer Kit

Verifying PyTorch

Test the success PyTorch installation by executing the next commands from an interactive Python shell:

testing.py

```
import torch
print(torch._version_)
print('CUDA available: ' + str(torch.cuda.is_available()))
a = torch.cuda.FloatTensor(2).zero_()
print('Tensor a = ' + str(a))
b = torch.randn(2).cuda()
print('Tensor b = ' + str(b))
c = a + b
print('Tensor c = ' + str(c))
import torchvisionhttps://developer.nvidia.com/embedded/learn/jetson-ai-
certification-programs
print(torchvision.__version__)
```


Machine Learning Container

- The I4t-ml docker image contains TensorFlow, PyTorch, JupyterLab, and other popular ML and data science frameworks such as scikit-learn, scipy, and Pandas pre-installed in a Python 3.6 environment
 - Latest 14t-ml:r32.6.1-py3
 - TensorFlow 1.15.5
 - PyTorch v1.9.0
 - torchvision v0.10.0
 - torchaudio v0.9.0
 - onnx 1.8.0
 - CuPy 9.2.0
 - numpy 1.19.5
 - numba 0.53.1
 - OpenCV 4.5.0 (with CUDA)
 - pandas 1.1.5
 - ---- 1 E /

C. García garsanca@ucm.es

Week1: Getting Started with Jetson Nano Developer Ki

Running the Container

First pull one of the **I4t-ml** container:

Then to start an interactive session in the container, run the following command:

Mounting Directories

To mount scripts, data, ect. from your Jetson's filesystem to run inside the container, use Docker's -v flag when starting your Docker instance:

Terminal #1

nano@jetson-nano:-\$ sudo docker run -it --rm --runtime nvidia --network host v /home/user/project:/location/in/container nvcr.io/nvidia/14t-ml:r32.6.1-py3

• You should then be able to start a Python3 interpreter

C. García garsanca@ucm.es

Week1: Getting Started with Jetson Nano Developer Kit

Connecting to JupyterLab Server

- A JupyterLab server instance is automatically started along with the container.
- You can connect http://localhost:8888 (or substitute the IP address of your Jetson device)
 - Password: nvidia

📁 jupyter	first-steps-with-python-and-jupyter (unawed changes)	ngost 🥏
File Edit	few Insert Cell Kernel Widgets Help	Not Trusted Python 3: O
5 + × Ø	K + + ► Run ■ C ≫ Maridown - □	
	First Steps with Python and Jupyter	
	Part 1 of "A Gentle Introduction to Programming with Python"	
	This succial is the first in a series of beginner-triendly succisis on programming using the Python language. These tatori approach, and the best way to learn the material is to execute the code and experiment with the examples. Check out t	ials take a practical coding-based the full series here:
	1. First Stress with Porton and Junear 2. A Quest, Low C. And Anna Anna Anna Anna Anna Anna Anna	
	The following topics are covered in this tutorial:	
	Potenting automatic operaties using Python Soharq unait-spreadents using variables Exalating conditions using physica Contenting conditions with bigliad operaties Adding test tayles using Markdown	
	How to run the code	
	This suborial is an executable Jupyier notebook. You can "run" this tutorial and experiment with the code examples in a resources (recommended) or on your own computer.	ccupie of ways: using free online

C. García garsanca@ucm.es

Veek1: Getting Started with Jetson Nano Developer Kit