
Introduction to Artificial Intelligence

Internet of Things and Data Analytics

Final project

Hector Garcia de Marina
hgarciad@ucm.es

March 21, 2022



Chapter 1

Summary

The final project consists of two separated exercises. The first one deals
with handwritting recognition. The exercise covers the algorithms of Neural
Networks, K-nearest neighbors, and Support Vector Machines. The second
exercise deals with planning the route and guiding a robot in an environment
with obstacles. The exercise covers the algorithms of Genetic Algorithms
and Guiding Vector Fields.

1.1 Scores

In order to pass the course, the two exercises are mandatory. If the sent
report is satisfactory, then (and only then) the Quizzes and the Assigments
during the course will be considered to increase the final score of the student.
The scores will be reported in a scale out of 10, being 5 the minimum score
to pass, and 10 the maximum score.

1.2 Report

The two exercises must be sent in two different reports. In particular, as a
Jupyter notebook. It must be very clear at the beguinning of the report the
names of the students. Please, note that only code will not be enough,
and discussions and comments on the methodology and results are necessary
for passing.

1.3 Deadline

There are six sessions where the students can ask and interact with the
teacher on the exercises. After that, the exercises must be sent before the
6th of May.

1



Chapter 2

Handwriting recognition

From the database http://yann.lecun.com/exdb/mnist/ you can find a test
set of 28× 28 pixel images with handwritten numbers from 0 to 9 in it.

You have to write and verify the following programs:

• Code a Neural Network with PyTorch. Try different architectures,
i.e., different number of neurons, hidden layers, loss functions, etc,
and comment the differences on the results.

• Code a K-nearest neighbors algorithm. Consider only the numbers
0, 1, and 2. Use part of the database as a known points/numbers, and
the other part as for testing the algorithm.

• Code a Support Vector Machine. Consider only the numbers 0, 1, and
2. Use part of the database as known points/numbers, and the other
part for testing the algorithm. Try different kernels and comment the
differences on the results.

For the K-nearest neighbors and Support Vector Machines algorithms,
it is enough if you use 500 samples for training/known points, and another
different 100 samples for testing the algorithm.

2



Chapter 3

Path planning and guiding of
a mobile robot

Given a map of 100 × 100 length units. We fill it with n > 1 rectangular
obstacles Ri.

Ri := {1Ri,
2Ri,

3Ri,
4Ri}, (3.1)

where jRi ∈ R2 are the four corners of the rectangle.
We have a robot starting from an arbitrary position p0 ∈ R2, and we

need to guide it to a target position pT ∈ R2 within the map. Check that
both positions do not lie within a rectangle/obstacle.

You have to write and verify the following programs:

• Code a function that generates a map of 100× 100 with n rectangular
obstacles. Use Matplotlib to draw it.

• Code a Genetic Algorithm that generates s ∈ N segments connecting
p0 and pT , and these segments do not lie within any rectangular ob-
stacle. You can define a segment with a starting and ending point, for
example sj := {startx, starty, endx, endy}.

• Given the series of segments, code a simulation where the robot follows
the segments employing the Guiding Vector Field algorithm to reach
the destination pT .

In the genetic algorithm, you can use the chromosomes to codify the in-
formation of the s segments. For example, chromosome := {s1x , s1y , . . . , ssx , ssy}.
Note that the ending point of a segment is the starting one for the next seg-
ment. The fitness function can be the summation of the length all the
segments, plus the segment form by p0 and s1 and by sn and pT . If one the
segments hits an obstacle, then you can add a penatly of 9999 to the fitness
function.

3



For the simulation of the robot’s motion, we are going to consider noise.
For example, given a time step ∆T , then the position of the robot must be
updated using the following:

p(k + 1) = p(k) + directionOfMotion× rand×∆T, (3.2)

where rand ∈ R2 is a random vector with norm one, and k is the iteration
in the simulation loop.

4


