

ESP-IDF. Intro I/O

IoT Node Architecture

COMPLUTENSE Types of devices

Data presentation

- Interact ith users moving data between users and the system
- Mouse, keyboard, screen, printer...

COMPLUTENSE Many type of devices

Communication devices between systmes

- They allow remote communication through network
- Network Interface Card, modem..

COMPLUTENSE Type of devices

Data acquisition

- Communication with sensors and actuators
- The use to include (or require) ADC / DAC devices

Storage

• Flash, SD Card, magnetic...

- Inteaction CPU <-> real world
- Input
 - From devices to CPU
 - From devices to memory
- Output
 - From CPU to device
 - From memory to device
- In some scenarions, I/O performance becomes the bottleneck
 - Because it is much slower than CPU or memory

COMPLUTENSE Global I/O system structure

Componentes:

COMPLUTENSE Device controller (HW part)

- Interace between device and processor
 Role:
 - Control and timing
 - It may adapt the transfer speed
 - Communicates with CPU
 - Communcates with device

It has 2 interfaces

- Buffering
- Error detection

Complutense Controller addressing

□ Isolated I/O

- Different address spaces (memory I/O)
- Specific instructions in ISA
 - IN IOport, Ri (CPU \leftarrow perfipheral)
 - OUT Ri, IOPort
- (peripheral \leftarrow CPU)
- Example: Intel x86

Memory mapped I/O

- Same address space (memory I/O)
- We can use regular load/store operations
 - LOAD Ri, IOaddr(CPU ← Peripheral)
 - STORE Ri, IOaddr (Peripheral \leftarrow CPU)
- Example: ARM

COMPLUTENSE I/O in FreeRTOS / ESP-IDF

□ We will use services provided by the OS

- We are NOT going to write our own drivers
- We DO NOT need to know the address of each device
 - But if you are interested.....

Bus Type	Boundary Address		Sizo	Torgot	Commont
	Low Address	High Address	SIZE	larget	Comment
Data	0x3FF0_0000	0x3FF0_0FFF	4 KB	DPort Register	
Data	0x3FF0_1000	0x3FF0_1FFF	4 KB	AES Accelerator	
Data	0x3FF0_2000	0x3FF0_2FFF	4 KB	RSA Accelerator	
Data	0x3FF4_0000	0x3FF4_0FFF	4 KB	UART0	
	0x3FF4_1000	0x3FF4_1FFF	4 KB	Reserved	
Data	0x3FF4_2000	0x3FF4_2FFF	4 KB	SPI1	
Data	0x3FF4_3000	0x3FF4_3FFF	4 KB	SPIO	
Data	0x3FF4_4000	0x3FF4_4FFF	4 KB	GPIO	
	0x3FF4_5000	0x3FF4_7FFF	12 KB	Reserved	
Data	0x3FF4_8000	0x3FF4_8FFF	4 KB	RTC	
Data	0x3FF4_9000	0x3FF4_9FFF	4 KB	IO MUX	