
1

ESP-IDF. Polling e
Interrupts

IoT Node Architecture

q Let’s image a	button.	When is it pressed?
1. We may sample the button status periodically

• Reading (load) from the button controller address

2. We may configure the system so it notifies us when it happens
• Pressing a button may change the voltage in a pin (for example from 0V to 3.3V)
• We may configure the controller to interrupt the CPU whenever this voltage swing occursstancia

How do we know if a device has something for us?

q Periodically sample if the device is ready
§ Then, proceed with the read/write

q Some devices do	not require the check-if-ready step
§ Checking the voltaje in a GPIO pin
§ Reading an infrared sensor conected to an ADC

Samplin (polling)

3

q External	events	that	interrups the	execution	of	a	task	in	an	arbitrary	point
§ It is NOT due to the task execution (although exceptions may happen for certain

actaions like divide by 0...
§ Usually associated to I/O interactions

• Pressing a button, new network packet arrives...

q The	asystem archictecture may	define	several	interrupts
§ And we can write a different Interrupt Service Routine (ISR) for each of them
§ And ISR looks like a normal function to us

Interrupts

4

q It	is	a	software	routine	(function)
§ It is automatically called when an interrupt arrives
§ They should do the minimal work possible

Interrupt Servce Routin (ISR)

5

ISR

Tarea Tarea

q They	are	NOT	a	tasj
§ An ISR has higher priority that any task
§ A task will nevel call to a ISR

q It	MUST	NOT	block
§ We shouldn’t use functions from ESP-IDF that potentially could get block

• Semaphores, queues, writing to the terminal....

§ FreeRTOS defines a set of safe ISR functions
• They append “FromISR” in its name
• xQueueSendFromISR(), xTimerStartFromISR()

ISR. FreeRTOS / ESP-IDF

6

q Often	it	is	a	good	idea	to	delegate	the	processing	of	an	interrupt	to	a	task
q Thus,	and	ISR	should

§ Keep the source of interrupt (if required later)
§ Clean the interrupt (to avoid it to trigger again. FreeRTOS does it for us
§ Notificar a una tarea que debe hacer el procesamiento asociado a la interrupción

q We	could	include	tasks	whose	only	purpose	is	to	process	interrupts
§ They will be typically blocked (semaphore)
§ ISR will wake it up
§ The could be high priority

Delayed interrupt management

7

q ISR	can	unblock	a	counting	semaphore
§ A task will be waiting for in a counting sempahore
§ ISR will post the semaphore (Give() in ESP-IDF syntax)
§ The waiting task will finish the required computation
§ Important: use timeout when waiting int the semaphore to check for potential errors in

the device

Using semaphores (counting semaphores)

8

q ESP-IDF	has	services	to	register	interrupts	linked	to	one	of	the	interrupt	
sources	from	the	ESP32
§ ESP32 has 71 interrupt sources
§ Each of the two cores (PRO – APP) has 32 interrupt levels

• 26 of them linked to peripherals

§ esp_intr_alloc() allows to associate one of the 71 available interrupts to some free slot
of a core

§ That is what drivers do....we DO NOT develop drivers
• We will use higher level functionality to register ISRs for specific devices

q ISRs	must	have	the	following	prototype
§ void ISRname(void *arg)

ESP-IDF interrupt support

9

