
1

Partitions and filesystem
(ESP-IDF)

q Partition:		region of	a	storage device that s	managed independently from
others
§ It is like a separate virtual device

q Partition table:	structure that stores how the device is partitioned
§ It includes the size, type and location of each partition
§ It is usually stored in a fixed position of the device (and it is usually of fixed size)

Partitions

q Offset	0x8000	in	Flash
§ Size 3072 bytes

q Checksum (MD5)	after partition table to	guarantee integrity
§ Also signature after table if secure boot activated

q Default	partition table:

§ There is another predefined alternative with OTA partitions
§ We can define our own with a CSV file
§ We have to use menuconfig to choose the partition table

Partitions in ESP32

3

https://docs.espressif.com/projects/esp-idf/en/v4.1/api-guides/partition-tables.html

https://docs.espressif.com/projects/esp-idf/en/v4.1/api-guides/partition-tables.html

q How information is organized inside a	partition
§ To create the illusion of files, folders...

q Logic vision of	a	file
§ Sequence of bytes with a current point
§ We can acces it using an API: open(), read(), write()...

q But,	where is each byte	in	the device?
q The filesystem defines	that relationship

§ The partition is divied in fixed size blocks (~4KB large)
§ Filesystem has to define the link the “name of a file” (and its

path) to the relevant device blocks

Filesystem

4

E r a s e u n

a

r
E

s ?

Logic vision
open(...) write(...)

Pyhsical world

Example filesystem (FAT)

Gestión de Ficheros y Directorios 5

Name Atrib. KB Block

pep_dir dir 5 27

fiche1.txt 12 45

Name Atrib. KB Block

carta1.wp R 24 74

prue.zip 16 91

Root folder

Folder pep_dir

EOF

58

EOF

EOF

75

76

EOF

51

27

45

51

58

74

75

76

91

Logic-to-physic translation with FAT

0 4096 8192

BL 0 BL 1 BL 2
E r a s …. p r o c ….

1 3 4 5 6

7 9 10 11 12

0

8
FAT

L L 4 10 eof eof L L 11 L 5 15
0 1 2 3 4 5 6 7 8 9 10 11

Tabla FAT

BL 0 → BF 3
BL 1 → BF 10
BL 2 → BF 5

L → That block is free (0,1…)
eof → Last block of a file

Mounting filesystems

Gestión de Ficheros y Directorios 7

/

/lib /bin /usr

/

/d1 /d2 /d3

/d3/f2/d3/f1

/

/lib /bin /usr

/usr/d1 /usr/d3

/usr/d3/f2/usr/d3/f1

Volumen raiz
(/dev/hd0)

Volumen sin montar
(/dev/hd1)

mount /dev/hd1 /usr

Volumen montado

q Abstraction layer of	the OS	to	
offer a	common API	to	work
with files
§ It hides the existance of several

filesystems
§ From the path of the mounting

point it determines the type of
filesystem (FAT, ext2, ext4...)

§ And selects the right operation for
that filesystem
• read() à read_fat()

Virtual File System

8

User
Process User Proce User Proce …

User level

VFS

File organization module

Ext3 NFS proc FAT

Block server Block cache

Device drivers

System level

q ESP-IDF	supports FAT	y	SPIFFS
q ESP-IDF	allows to	define	partitions of	type data	and	subtype fat or spiffs

§ CSV file examples in
• https://github.com/espressif/esp-idf/tree/master/components/partition_table

§ Documentation
• https://docs.espressif.com/projects/esp-idf/en/v4.1/api-guides/partition-tables.html

ESP-IDF. Partitions and filesystems

9

Name, Type, SubType, Offset, Size, Flags
nvs, data, nvs, 0x9000, 0x6000,
phy_init, data, phy, 0xf000, 0x1000,
factory, app, factory, 0x10000, 1M,
storage, data, fat, , 1M,

.csv file has to be located at the root of the project
menuconfig allows to show the name of the CSV file
If using PlatformIO we must include board_build.partitions = name.csv in platformio.ini
Using flash command we write both the table and the app

https://github.com/espressif/esp-idf/tree/master/components/partition_table
https://docs.espressif.com/projects/esp-idf/en/v4.1/api-guides/partition-tables.html

q To	use	a	FAT	filsesystem we need to
§ Register FAT in the VFS
§ Mount the filesystem
§ https://docs.espressif.com/projects/esp-idf/en/v4.1/api-reference/storage/fatfs.html

q It is convenient to	uses	theWear levelling component
§ It distributes write operations to increase FAT lifetime
§ Integrated in the FAT file sytem
§ https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/wear-levelling.html
§ https://github.com/espressif/esp-idf/tree/release/v4.1/examples/storage/wear_levelling

§ There is a function that registers and mounts a FAT system:
• esp_vfs_fat_spiflash_mount()

ESP-IDF. Mounting filesystems

10

https://docs.espressif.com/projects/esp-idf/en/v4.1/api-reference/storage/fatfs.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/wear-levelling.html
https://github.com/espressif/esp-idf/tree/release/v4.1/examples/storage/wear_levelling

ESP-IDF. FAT Example

11

const char* char *base_path = "/spiflash";
static wl_handle_t s_wl_handle = WL_INVALID_HANDLE;
const esp_vfs_fat_mount_config_t mount_config = {

.max_files = 4,

.format_if_mount_failed = true,

.allocation_unit_size = CONFIG_WL_SECTOR_SIZE
};
void app_main(void) {
...

esp_err_t err = esp_vfs_fat_spiflash_mount(base_path, "storage", &mount_config, &s_wl_handle);
....

FILE *f = fopen("/spiflash/hello.txt", "wb");
fprintf(f, "written using ESP-IDF %s\n", esp_get_idf_version());
fclose(f);
...
esp_vfs_fat_spiflash_unmount(base_path, s_wl_handle);

