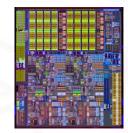


IoT Node Architecture

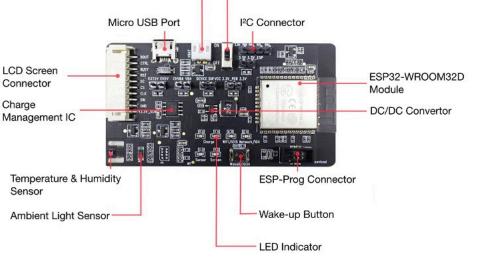

Boards, Modules, SoCs, cores

Dev Board

Module

System On Chip (SoC)

cores

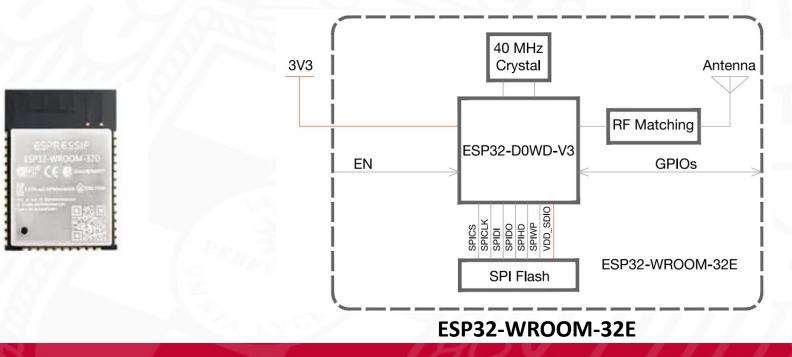

COMPLUTENSE Development Board

Development board (devKit....)

- Allows connecting several modules or SoC
- May expose certain SoC connection using pins
- May include buttons, LEDs, USB ports, FLASH memory
- May include logic to ease programming and debugging

ESP32 DevKitC

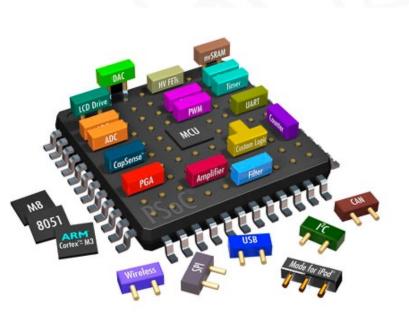
Power Switch


Battery Connector

https://www.espressif.com/en/products/devkits/esp32-devkitc

Module

- Supports several SoC models
- May include support for FLASH, GPIO, antennas
- May include quartz clock
- □ Sometimes, the term SoC is used for the whole package



COMPLUTENSE System-on-chip

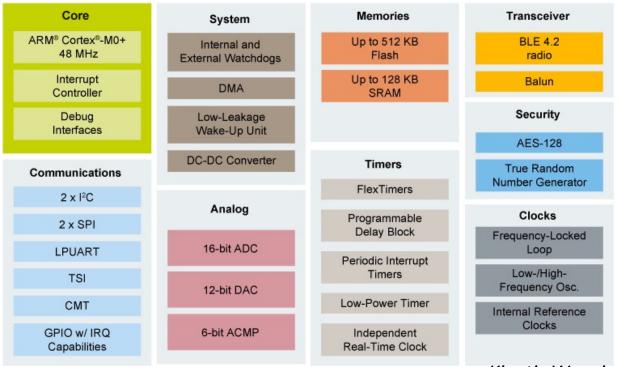
□ System-on-chip (SoC) is a single chip integrating...

- One or more CPUs and other computing elements
- Memory
 - Usually NAND /NOR flash
- Several I/O devices
 - ADC / DAC
 - GPIO controller
 - PWM generators
 - Bus controllers: I2C, SPI, USB, CAN...

- Large number of companies in this sector
 - The investment/infrastructure is not as large as CPU design/fabrication
 - It is usually about *placing pieces* (CPUs, GPUS, interfaces...)
 - Links to know some relevant companies
 - <u>http://www.anandtech.com/show/8389/state-of-the-part-soc-manufacturers</u>
 - <u>https://www.bisinfotech.com/top-10-system-on-chip-soc-manufacturers-of-2020</u>
 - IP cores designers are also entering this market (ARM)
 - Or at least provide development tools to design custom SoC
 - <u>https://www.arm.com/develop/custom-system-on-chips</u>

STMicrolectronics

- Large company with years of experience
- <u>http://www.st.com/en/secure-mcus.html</u>
- http://www.st.com/en/microcontrollers.html (STM32 family) _


Ultra-Low-	-Power								
STM32L4 se	ries – Ultra-L	ow-Power an	d Perform	ance with	DSP, FPU	and ART Acc	celerator™		
80 MHz Cortex-M4 CPU	Up to 1-Mbyte dual-bank Flash	Up to 320-Kbyte SRAM	2.0 OTG	2x 16-bit advanced MC timer	DFSDM Op-amps comp.	Quad-SPI FSMC SDIO	SHA-256 AES-256 TRNG	2x SAI 2x CAN Up to LCD 8x40	STM32 L4
STM32L1 series – Ultra-Low-Power									
32 MHz Cortex-M3 CPU	Up to 512-Kbyte Flash	Up to 80-Kbyte SRAM	Up to 16-Kbyte EEPROM		Op-amps comp.	FSMC SDI0	AES-128	Up to LCD 8x40	STM32 L1
STM32L0 series – Ultra-Low-Power									
32 MHZ Cortex-M0+ CPU	Up to 192-Kbyte SRAM	Up to 20-Kbyte SRAM	Up to 6-Kbyte EEPROM		comp.	LP ADC 12-/16-bit	TRNG AES-128	LCD 8x48 / 4x52	STM32 LO

....

NXP

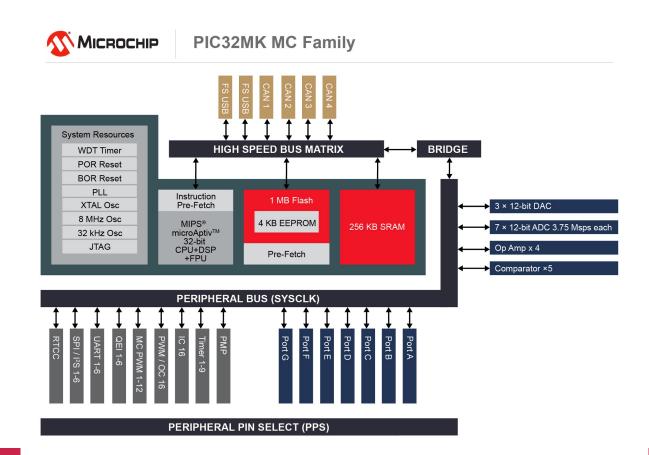
- Formerly Philips,
- <u>http://www.nxp.com/products/microcontrollers-and-processors/arm-based-processors-and-mcus:ARM-ARCHITECTURE</u>
- <u>http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors:POWER-ARCHITECTURE</u> (based on IBM Power cores)

Kinetis W series

MASTER IOT - ANIOT

Qualcomm

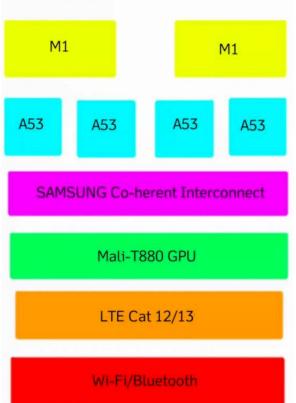
- Snapdragon designers (using ARM tech)
 - They designed their own cores (*Krait*) with ARM ISA
- <u>https://www.qualcomm.com/products/embedded-processors</u>
- <u>https://www.qualcomm.com/news/onq/2016/09/28/snapdragon-600e-and-410e-processors-help-iot-manufacturers-design-build-and</u> (Arrow Microelectronics)



Microchip

Delivers ARM and MIPS cores

http://www.microchip.com/design-centers/32-bit/architecture/pic32mk-family


Samsung

- ARM based SoCs and their own (*Exynos M*) with ARM ISA
- Like Intel does, they build their own chips

EXYNOS 8 octa 8890

<u>http://www.samsung.com/semiconductor/minisite/Exynos/Solution/MobileRpocessor/Exynos_Q_Series_8895.ht</u>
 <u>ml</u>

- Broadcom
 - Rapsberry Pi
 - <u>https://www.broadcom.com/</u>
- Marvell
 - <u>https://www.marvell.com/</u>
- Mediatek
 - <u>https://www.mediatek.com/</u>
- Allwinner
 - Banana Pi
 - <u>http://www.allwinnertech.com/</u>
- Espressif
 - More IoT oriented
 - <u>http://espressif.com/</u>
- Silicon Labs
 - https://www.silabs.com/

(Dev) Boards

- Finally, SoCs are integrated in a board (PCB) which may include more componentes: external flash, standard ports...
- Most SoC companies also deliver their own development baords
 - Pre-designed PCB with support from the comany
 - Very useful for initial prototypes
 - If, once tested, that PCB does not fit our requirements, we may deign our own PCB reusing the SoC

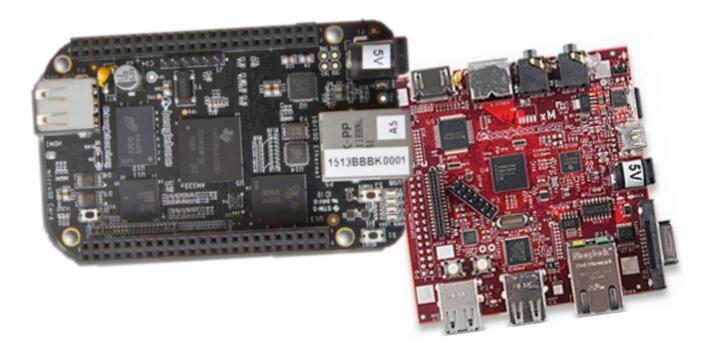
Raspberry Pi

- Currently iin the 4th version
 - SoC Broadcom BCM2711
 - Core ARMv8 Cortex A72 Quadcore 1.5 GHz
 - 2 8 GiB LPDDR4 SDRAM
 - Power consumption 3W (idle) 6.25W (maximum)
- Raspberry Pi Zero,
 - SoC Broadcom BCM2835
 - Core ARM 1176JZF-S 1 GHz
 - 512 MiB LPDDR2
 - <1W
- Linux/Windows supported

Some well-known boards

Arduino

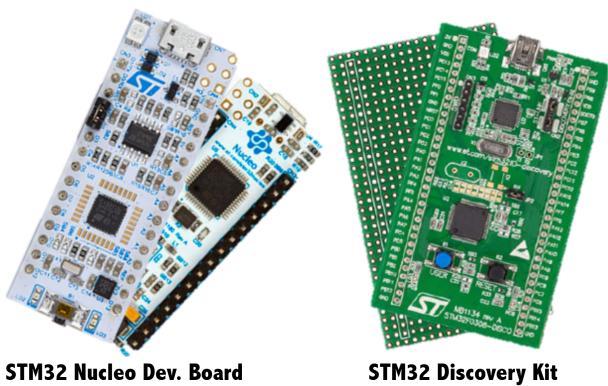
- Not just a board, but a whole familiy from several vendors
- They all share the same programming framework and common sockets that allow to add more boards (shields)
- Wiring programming (C/C++)
- Some models ship Atmel cores. Others, ARM core.
- Great community of makers with many examples



Some well-known boards

Beagleboard

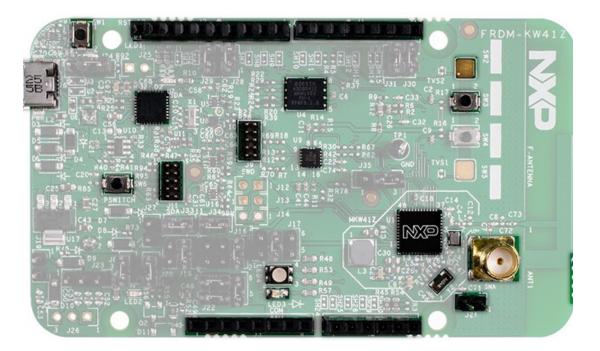
- Beaglobone X-15
 - Similar to Raspberry Pi, but more I/O oriented
 - SoC de Texas Instruments (Sitara AM5728)
 - 2 ARM <u>Corext-A15@1.5GHz</u>, 2 Cortex-M4@212MHz , 2 TI C66x DSP@700MHz
- PocketBeagle
 - Similar to BeagleBone Black but with smaller factor



Maybe less well-known

STMicroelectronics

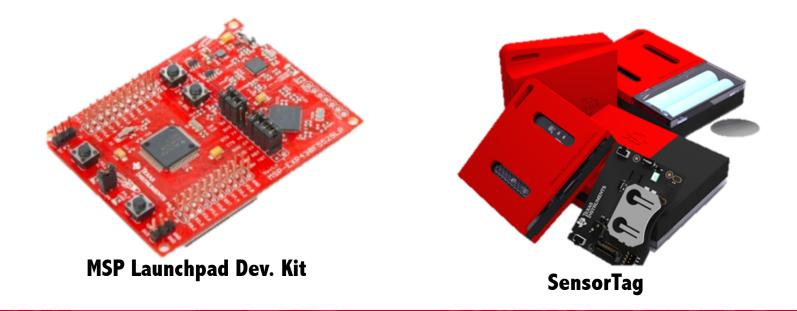
- Large european semidconductot company
- Huge set of products (sensors, analg...)
- Focus on IoT and automotive
- ARM based SoC



Maybe less well-known

NXP

- Split from Philips, focused on microellectronics
- SoCs basado en ARM y Power


Freedom Development Kit

Maybe less well-known

Texas Instruments

- US tech giant on DSPs and electronics
- Always topped DSP market with own designs, now including ARM in their SoCs
 - DSP compilers are a likely the best
- TI OMAP familiy was used in many high-end mobile series
- The launched SensorTag a few years ago to enter IoT market

Y many more...

- Nordic
 - Focued on Low power and connectivity
 - ARM based. Used to be mbed compatible

- Cypress
 - ARM cores together with in-house programmable techologies
 - PSoC series with programable HW programable (analog blocks)

- PyCom
 - Ships their own ESP32 based boards
 - Full connectivity: WiFi, Lora y Sigfox , BLE
 - micrPython based programming

- Useful links (not all of them IoT)
 - Postscapes (específica para IoT)
 - <u>http://www.eurotech.com/en/products/embedded+boards</u>
 - <u>Arrow</u>
 - <u>https://www.board-db.org/</u>
 - <u>Adafruit</u>
 - <u>Wikipedia</u>
 - <u>Allaboutcircuits</u>

- The huge offer makes harder the choice
- Some key aspects
 - System connectivity (SoC Board).
 - Interfaces to external sensors or other devices?
 - Network interfaces? (WiFi, BLE...)
 - Power and energy consumption. Low power modes
 - Max currents? Autonomy?
 - Powering the system (battery, supercap, solar panel...)
 - Which will be the node environment?
 - Energy harvesting
 - Available Clock/RTC to keep sincro
 - Available RTOS (Board-Soc supported?)
 - Available IDE (Integrated Development Environments)
 - Study the target application/domain: computation requirements? Memory? Storage?
- Check this guide about this topic

- Imagine a specific scenario where IoT could help
- Perform a theoretical study about the required HW components:
 - Sensor nodes: microcontrolers, sensors
 - Would *edge computing* be required?
 - RTOS and IDE to be used
 - Communication requirements
 - Energy consumption estimation. Powering mechanisms
 - Final packaging
 - Total budget
- NO code development. Just a paper work
- REPORT: write a report (PDF) describing your research
- DEADLINE: 20th december

- Which SoC do you have in your smartphone?
- How many cores does it have?
- Which cores?
 Does it have GPU?
- Other accelerators?
- Memory?
-
- Interesting links
 - <u>https://nanoreview.net/en/soc-list/rating</u>
 - <u>https://en.wikichip.org/</u>