
1

Robustness. Watchdog

q Our code must check potential errors
§ And try to recover if an error raises

q Recoverable errors
§ Function returns an error code: typically an integer (enum)
§ Throw an exception (C++ -> throw())

q Fatal	errors
§ Use	assert()/abort()
§ HW	exceptions Excepciones	HW
§ System level checks: Watchdogs,	heap and/or stack corruption detection

Error management

2

q The usual	way in	UNIX	world (syscalls)
§ Return ‘0’ if OK
§ Negative if something got wrong

• Or just, different to 0
• With a meaning for each of them
• https://docs.espressif.com/projects/esp-idf/en/stable/api-reference/error-codes.html

q What if our function encounters an error?
§ Try to recover from error: try again, reset a module, a device...
§ Propagate the error to the clling function

• Return error code / exception (throw() / catch())
• Important: undo the work performed before the error (malloc(), open()....)

§ Make the error fatal
• Using assert() / abort()
• This is not valid for middleware, except during development

Error codes (int)

3

https://docs.espressif.com/projects/esp-idf/en/stable/api-reference/error-codes.html

q ESP_ERROR_CHECK
§ https://docs.espressif.com/projects/esp-idf/en/stable/api-

guides/error-handling.html#esp-error-check-macro

§ Similar to abort() but it chekcs the function
returned value

§ The printed message includes localization
information (source file, line...)

q Panic Handler
§ ESP-IDF manageer for fatal errors (exceptions,

watchdogs, stack overflow...)
§ Configurable behavior

• https://docs.espressif.com/projects/esp-idf/en/stable/api-
guides/fatal-errors.html

• Default: core dump and reset

Managing errors. ESP-IDF

4

https://docs.espressif.com/projects/esp-idf/en/stable/api-guides/error-handling.html
https://docs.espressif.com/projects/esp-idf/en/stable/api-guides/fatal-errors.html

q Reset the system
§ Ctrl-Alt-Supr ????

q But....	What it the system in	onboard a	satellite?
§ Very likely there will be no keyboard!!

What to do if everything goes wrong?

q A	watchdog is a	descendent counter.	When it reaches 0,	it restes	the
system

q Every (good)	SoC has	(at	least)	a		watchdog hardware	(WDT)
§ The counter is a special timer
§ Action configurable, time configurable...

q The main idea	is that the code (middleware	or application)	must kick the
WDT before it reaches 0

q If a	reset happens due to		WDT,	 we need to	detect it after booting

Watchdog

6

q If the device hangs....	
§ Memory corruption and the code ends up in a infinite loop
§ HW component not answering a request (GPS, modem...)
§ Deadloack due to misuse of sempahores
§ High priority task are execute always and do not let low priority tasks to execute

q How are	we using the WDT?	
§ Basic (incomplete) idea: low priority task whose only goal is to kick the wathcdog
§ If the system hangs, the task will not execute and the watchdog would trigger
§ But, what if a high priority task hangs ? Maybe because a sempahore is never released

Using a watchdog

7

q ESP32	(hardware)	has	3	WDTs
q ESP-IDF	(software)	provides 2	types of	watchdogs

§ Interrupt watchdog: it checks if the FreeRTOS task scheduler has blocked for too long
• Infinite loops with interrupts disabled, block in an ISR
• It uses a hardware WDT

§ Task Watchdog Timer (TWDT): it checks that all tasks are progressing and none of them
abuse CPU usage
• By default, it tracks the Idle Task
• Any task can ”ask for surveillance”

– esp_task_wdt_add(TaskHandle_thandle)
• If included in the surveillanve, the task must kick the TWDT periodically: esp_task_wdt_reset(void)
• It uses another hardware WDT

ESP-IDF watchdog support

8

https://docs.espressif.com/projects/esp-idf/en/stable/api-reference/system/wdts.html

https://docs.espressif.com/projects/esp-idf/en/stable/api-reference/system/freertos.html
https://docs.espressif.com/projects/esp-idf/en/stable/api-reference/system/wdts.html

