

6LoWPAN

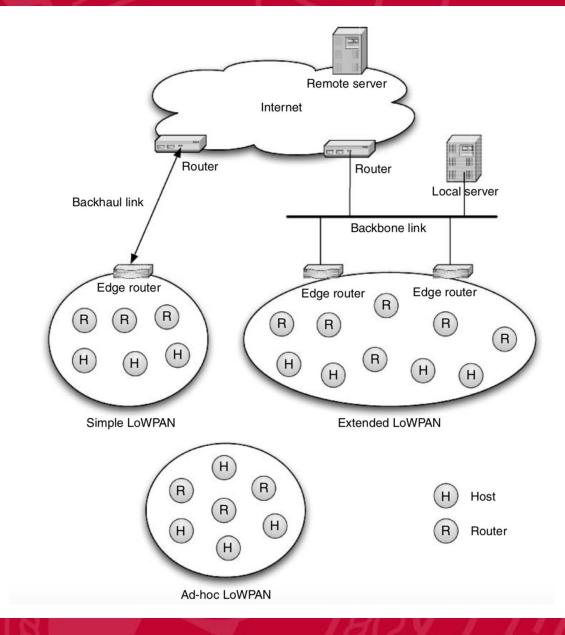
Networks and protocols 1

Facultad de Informática

Scalability Price Cabling Proprietary ZigBee 6lowpan radio + network Internet **6lowpan** ZigBee and Z-Wave, prop. Any vendor **ISA100 WHART** ISM etc. Complex Cables Vendor **Open development** middleware lock-in and portability 1980s 2000 2006 2008 -> Increased **Productivity**

- Low power RF + IPv6 = The Wireless Embedded Internet
- Benefits:
 - Open standards, reliable and long life
 - Easy learning curve
 - Transparent integration in the Internet
 - Global scalability
 - End-to-end data flow
 - No Gateways

4



6LoWPAN in IETF

- Specified by the Internet Engineering Task Force (ETF)
 - RFC4919: requirements
 - RFC4944: 6LoWPAN encapsulation
 - RFC6282: update of the RFC4944 with new compressed format
 - RFC6550: RPL
 - RFC6568: 6LowPAN applications and use cases
 - RFC6606: Routing problem specification
 - RFC6775: Neighbour Discovery
 - RFC6066: Header extensions

6LoWPAN architecture

IP Protocol Stack

ApplicationApplication protocolsTransportUDPICMPNetworkIPv6Data LinkIEEE 802.15.4 MACPhysicalIEEE 802.15.4 PHY

- Light protocols are preferred
 - UDP instead of TCP
 - Light alternatives to other application protocols (http, rest, soap, ...)

6LoWPAN Protocol Stack

IPv6 addressing

- 128 bits (16 bytes) addresses, several notations
 - Huge space: the population of the world is reaching 2³⁴ people,
 each of them could have 2⁹⁴ IPv6 addresses

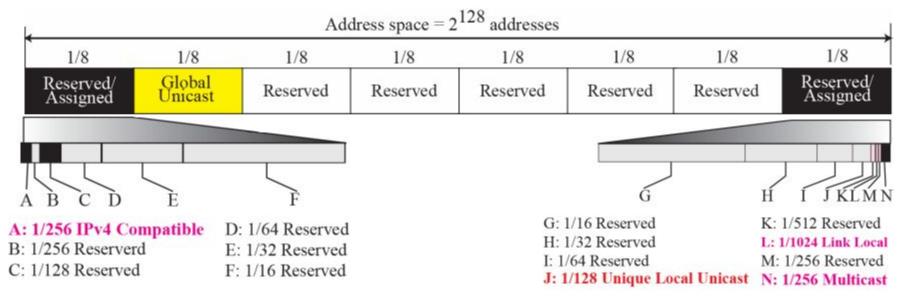
Binany	1000000010110110010110110011101110000101	
Dinary	000000000000000111111000101011111010100110010000	

Dotted	
Decimal	

128

91

Hexadecimal ()	3	2	6	4	9	6			12
Straight Hex	805B	2D9D	DC28	0000	0000	FC57	D4	C8	1F	FF
Leading-Zero Suppressed	805B	2D9D	DC28	0	0	FC57	D4	C8	1F	FF
Zero- Compressed	805B	2D9D	DC28			FC57	D4	C8	1F	FF
Mixed Notation	805B	2D9D	DC28			FC57	212	200	31	255



IPv6 addressing

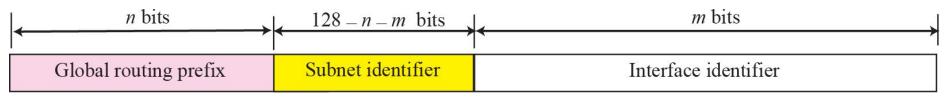
- Prefixes: common part of the network addresses, indicates the network
 - CIDR (Classless Inter Domain Routing) notation
 - Address/Prefix length in bits

FDEC **BBFF 0** FFFF/60

Address space organization:

IPv6 prefixes

	Block Prefix	CIDR	Block Assignment	Fraction
1	0000 0000	0000::/8	Reserved (IPv4 compatible)	1/256
	0000 0001	0100::/8	Reserved	1/256
	0000 001	0200::/7	Reserved	1/128
	0000 01	0400::/6	Reserved	1/64
	0000 1	0800::/5	Reserved	1/32
	0001	1000::/4	Reserved	1/16
2	001	2000::/3	Global unicast	1/8
3	010	4000::/3	Reserved	1/8
4	011	6000::/3	Reserved	1/8
5	100	8000::/3	Reserved	1/8
6	101	A000::/3	Reserved	1/8
7	110	C000::/3	Reserved	1/8
8	1110	E000::/4	Reserved	1/16
	11110	F000::/5	Reserved	1/32
	1111 10	F800::/6	Reserved	1/64
	1111 110	FC00::/7	Unique local unicast	1/128
	1111 1110 0	FE00::/9	Reserved	1/512
	1111 1110 10	FE80::/10	Link local addresses	1/1024
	1111 1110 11	FEC0::/10	Reserved	1/1024
	1111 1111	FF00::/8	Multicast addresses	1/256



- Types
 - Unicast: addresses a single interface of a node
 - Multicast: addresses a group of interfaces. A datagram sent to a multicast address has to reach all the nodes that belong to the group
 - Anycast: addresses a group of interfaces. A datagram sent to an anycast address has to be delivered to only one of the devices in the group
- Scopes
 - Link local: identifies a node in its level 2 domain (link)
 - Unique local: identifies a node in its administrative domain
 - Global: identifies a node in the global Internet (unique in the whole Internet)

IPv6 Unicast Addresses

Global unicast

• Unique local unicast

0 or 1 40 bits 16 bits 64 bits 111110 Random number Subnet ID Interface ID n = 48 bits

Link local unicast

IPv6 other unicast Addresses

• IPv4 compatible

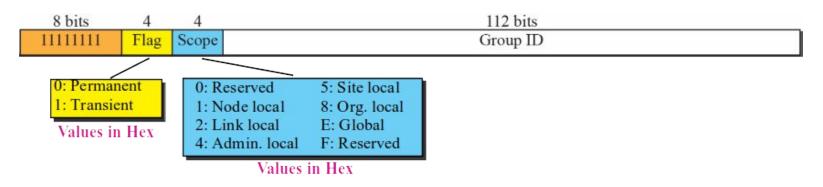
00000000	All 0s	IPv4 address
*	96 bits	32 bits

• IPv4 mapped

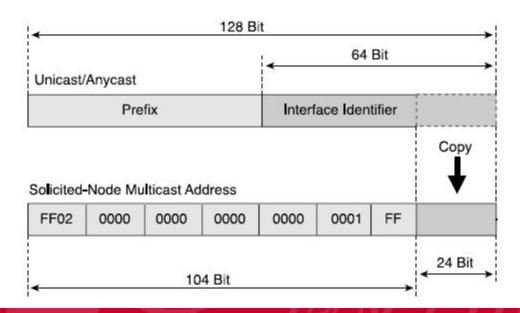
00000000	All 0s	All 1s	IPv4 address
<	80 bits	16 bits	$\stackrel{32 \text{ bits}}{\longleftarrow}$

Loopback

8 bits	120 bits
00000000	000000000000000000000000000000000000000
Prefix	Suffix


• Site-local (deprecated, in favour of the unique local)

	54 bits	64 bits			
1111111011	Subnet-ID	Interface-ID			



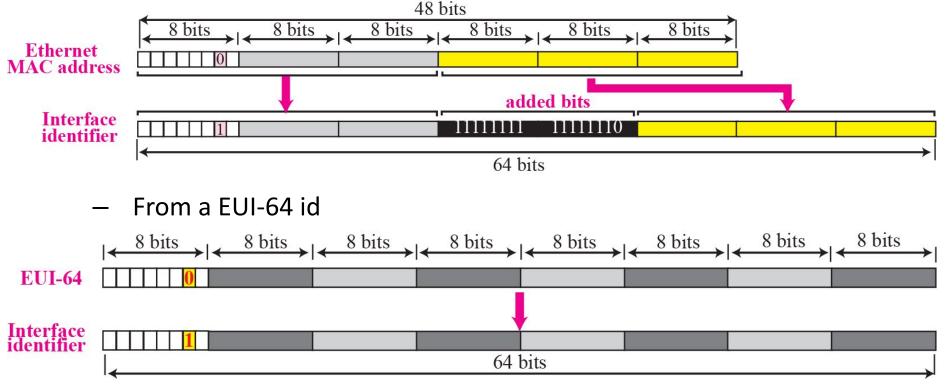
IPv6 Multicast Addresses

• Multicast Address

• Solicited-Node Multicast Address (used in NDP)

Completense IPv6 Neighbor Discovery Protocol

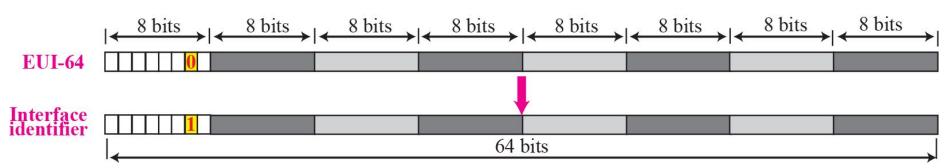
- IPv6 defines its own Neighbor Discovery Protocol (NDP)
 - A node uses the NDP to discover other devices in its link, obtain their MAC addresses and find routers
- NDP services
 - Router discovery
 - Prefix discovery
 - Parameter discovery (MTU, hop limit...)
 - Address autoconfiguration
 - Address resolution: obtain mac addresses from IPv6 addresses
 - DAD (Duplicate Address Detection)


COMPLUTENSE IPv6 NDP messages

- Neighbor Solicitation Message (NS)
 - Used for address resolution, DAD, and neighbor detection
 - Sent by a node to obtain or confirm the MAC address of a neighbor known its IPv6 address
 - The neighbor responds with a NA message
- Neighbor advertisement (NA)
 - Provides the MAC address after a NS request
- Router Advertisement (RA)
 - Send periodically by the routers
 - Announce the presence of the routers and the parameters of the network (like network prefix, or if DHCP6 shall be used)
 - Send also as a response to a RS
- Router Solicitation (RS)
 - Send by a node to obtain a RA from the router
 - Destination address is usually the *all-routers multicast* (FF02::2)

IPv6 Autoconfiguration

- The nodes can configure their interface id part of the address:
 - From a 48 bits mac address

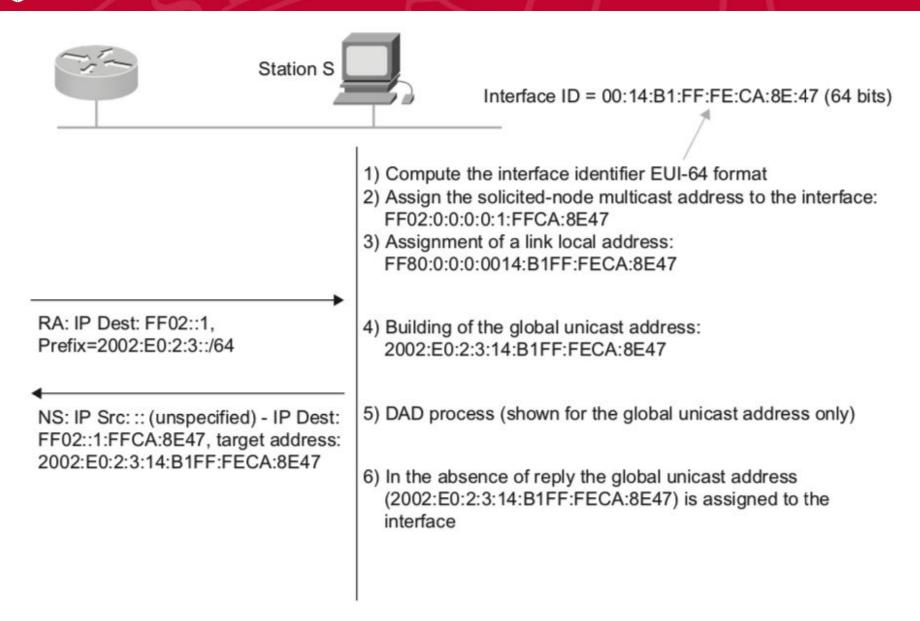


 The prefix used can be the one for a link local address or a unique local address

Interface ID for link-local in 802.15.4

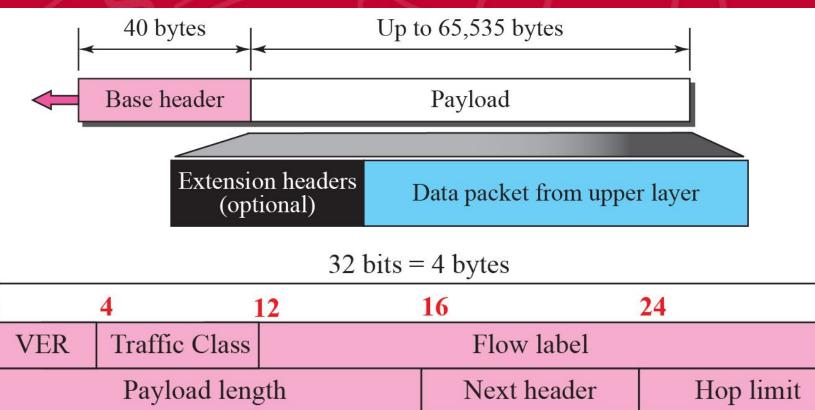
• From its EUI64 (standard IPv6)

NIVERSI


• From the 16 bits id assigned by the PANC

16 bits	16	bits	16 bits		_	
PAN-ID	00000000	00000000	short a	ddress	48 bit, e	qiv to mac addr.
bit U se pone a 0		terren ander an	· · · · · · · · · · · · · · · · · · ·	·····	*****	ana
Ο	00000000	11111111	11111110	00000000		

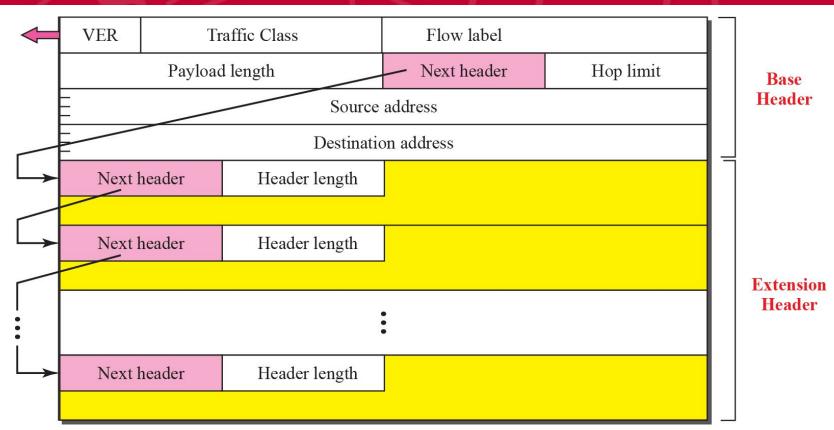
COMPLUTENSE IPv6 Autoconfiguración


- Before an address can be used, the device must confirm that it is unique (DAD)
 - Interchange of NS and NA messages
- To obtain the *global unicast* address the node has to request the network prefix
 - Can wait to receive a RA message or request one sending a RS to all routers

COMPLUTENSE IPAD IPV6 Autoconfiguration

UNIVERSIDAD COMPLUTENSE MADRID

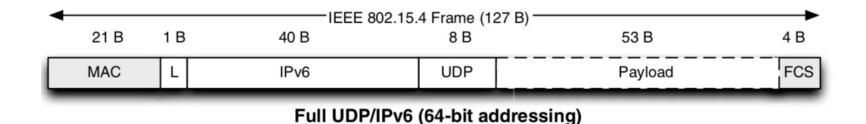
IPv6 datagram



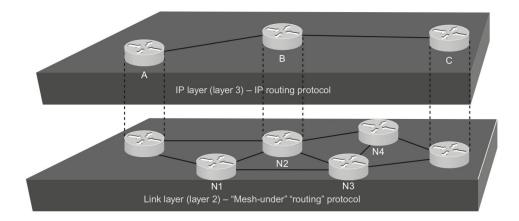
Source address (128 bits = 16 bytes)

Destination address (128 bits = 16 bytes) 31

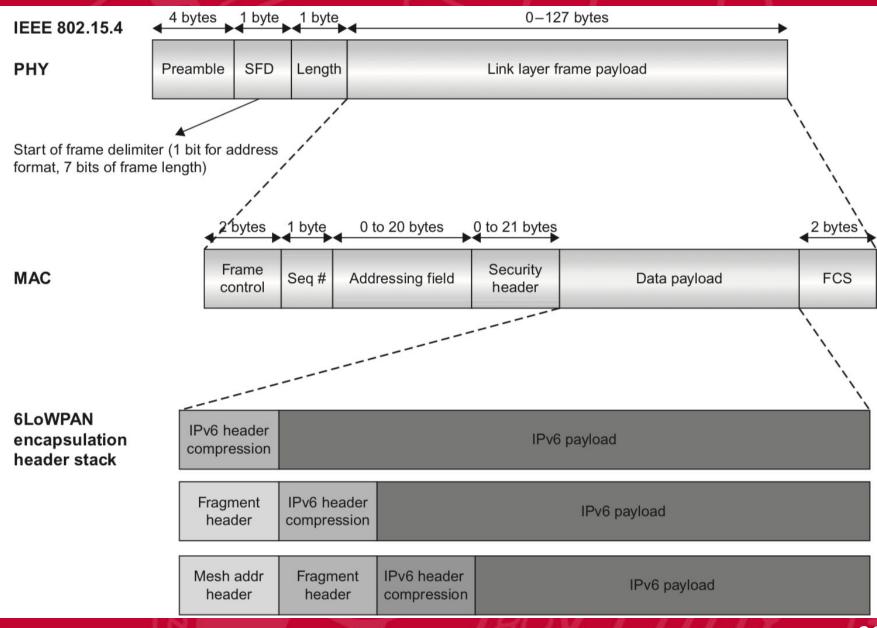



IPv6 datagram

Code	Next Header	Code	Next Header
0	Hop-by-hop option	44	Fragmentation
2	ICMP	50	Encrypted security payload
6	ТСР	51	Authentication
17	UDP	59	Null (No next header)
43	Source routing	60	Destination option



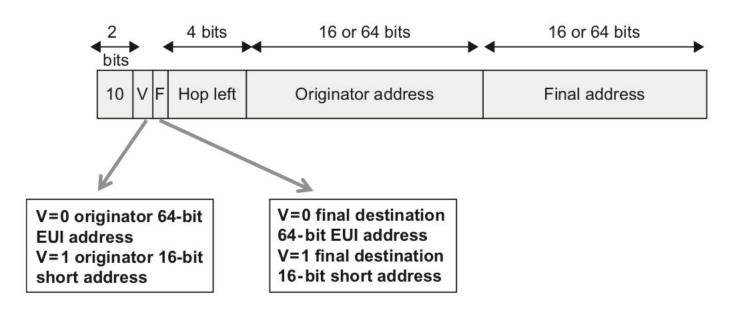
- MTU for 6LowPAN is 1280B
 - 802.15.4 packets are 127B, MSDU of 102B, removing security header (21B) remain 81B, removing 40B from the IPv6 header remain 41B, removing the 8B of the UDP header remain only 33B for the application
 - Header compression
 - Take advantage of L2 addresses -> 16 bit short address / 64 bit EUID
 - Fragmentación
- Stateless autoconfiguration
- Short reach => Múltiples Hops
 - Routing at several level (IP + link)



6LoWPAN: routing

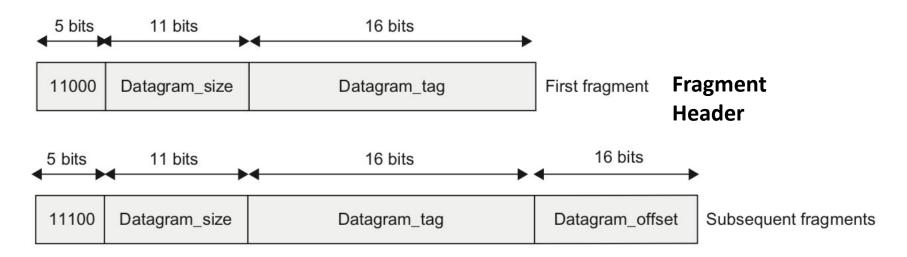
- Two types according to where is the routing done
 - Router-over -> L3
 - Mesh-under -> L2
 - Mixed

6LoWPAN encapsulation


UNIVERSIDAD COMPLITENSE

MADRID

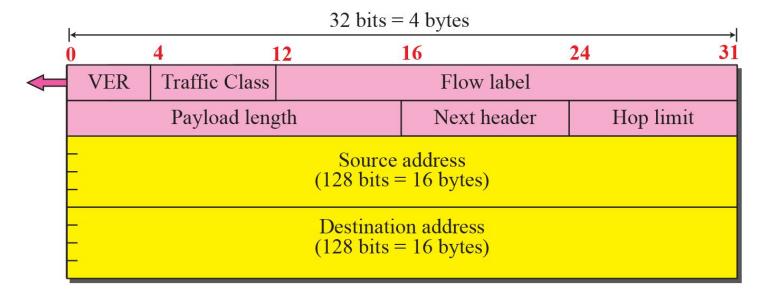
6Lowpan encapsulation								
2	2	1	0-20		0–21			2
Fran cont		Seq #	Addresses		ecurity ptional)		802.15.4 payload	FCS
				_				
	Me hc		Frag. header	Com head			IPv6 payload	
				~				
	D	ispatch	byte		01 00000	1	Uncompressed IPv6 frame follows	S
	00	Not 6	LowPAN		01 00001	0	HC1 compression follows	
	01		ddressing		01 01000	0	LowPANBCO broadcast	
		heade	r		01 11111	1	Escape code for additional dispate	ch byte
3	10	Mesh	header					
1	11	Frag. ł	neader		11 000xxx	(First fragmentation header	
					11 100xxx	(Subsequent frangmentation head	lers



- L2 Routing Protocol (*mesh-under*)
 - Only FFDs
 - Not used currently but the support for it is there
- Adds source and destination addresses to the header
 - Originator, the original source of the address
 - Final, the final destination for the packet
 - The 802.15.4 header will contain the source and destination for the current hop

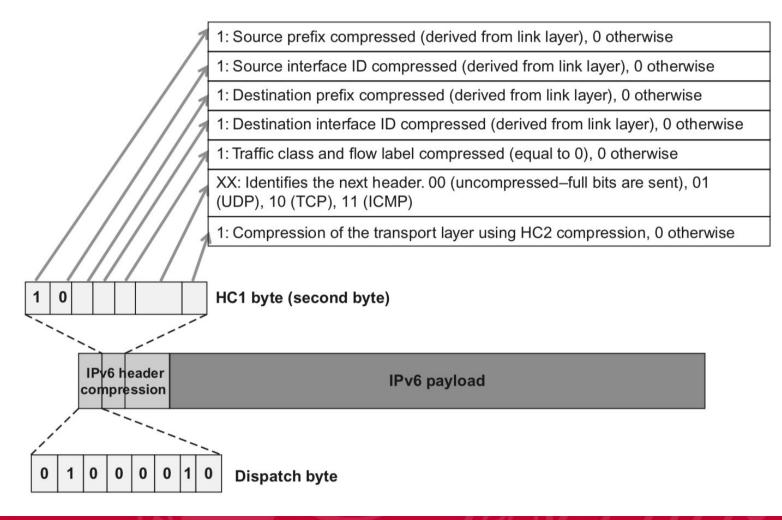
COMPLUTENSE Fragmentation

- Necessary when the payload of the IPv6 package does not fit in a single 802.15.4 frame
 - The frame is divided into several fragments
 - The size of the fragments are expressed in multiples of 8 bytes
 - Datagram_size: size of the original IPv6 datagram
 - Datagram_tag: id for the datagram. The same for all fragments
 - Used together with the source and destination addresses to identify the original datagram to which the fragment belongs
 - Datagram_offset: in blocks of 8 bytes

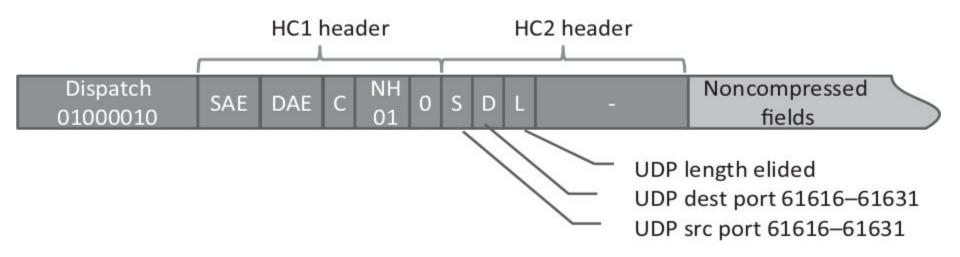


COMPLUTENSE 6LoWPAN: header compression

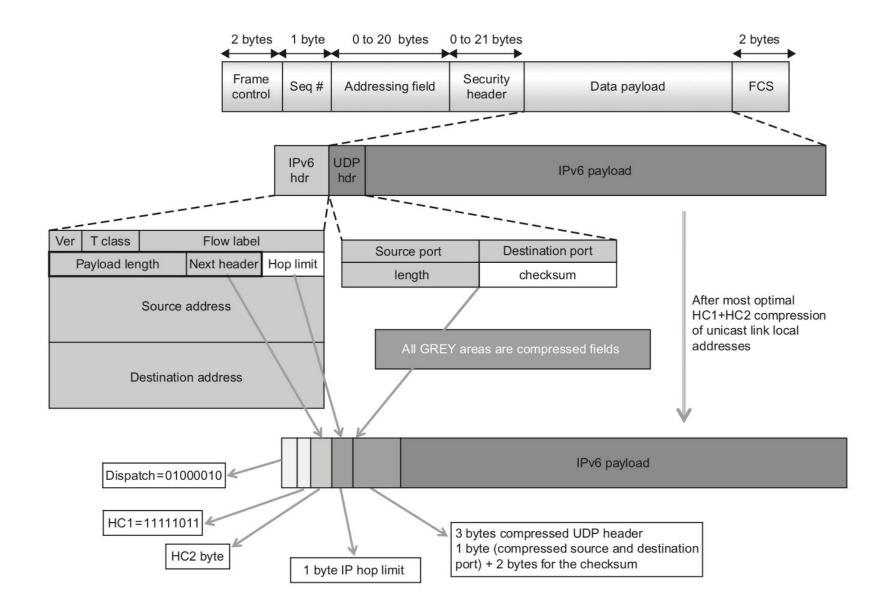
- Several compression techniques exist
- Most of them use state information to achieve higher compression rates
- A stateless compression was first designed
 - Only uses the information in each packet
 - Codes with less bits the most frequent values
 - Takes advantage of the redundancies in the lower layers


COMPLUTENSE HC1: observations on the IPv6 header

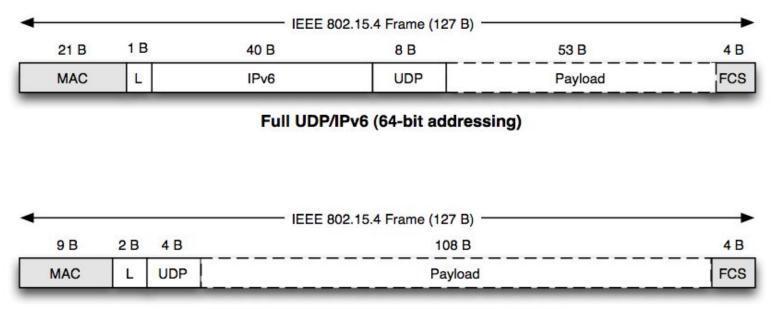
- Version: is always 6
- Source and destination addresses are frequently link-local
 - Interface ID can be obtained from the 802.15.4 header
- Length: can be obtained from the phy header in the 802.15.4 frame or the UDP header if present
- Traffic Class and Flow Label are usually 0
- Next Header usually is UDP, TCP or ICMP


MPLUTENSE HC1 IPv6 compressed header: 3 bytes

- Only the hop limit remains unmodified
 - Plus the dispatch byte and the HC1 signature a total of 3 bytes

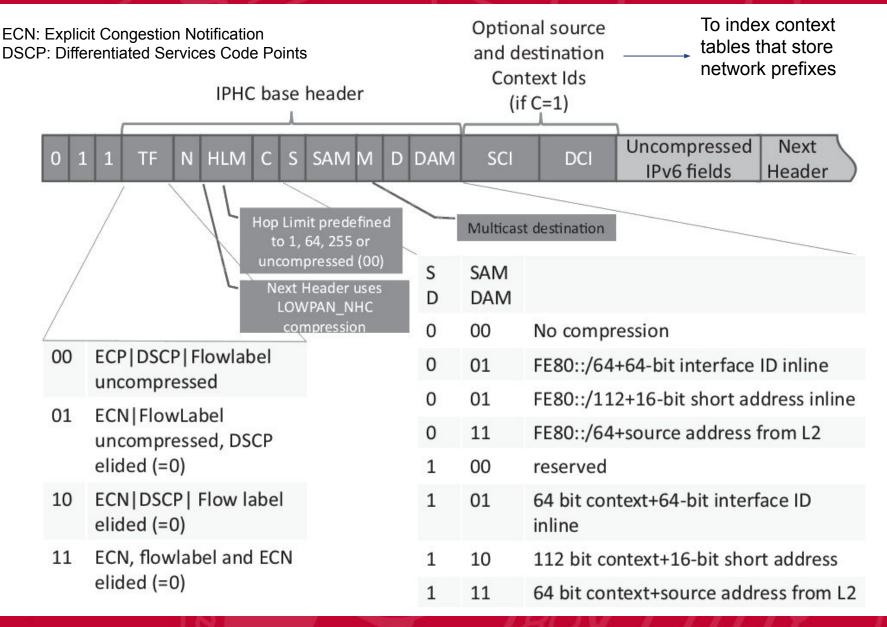


- S,D: 1 bit, indicate if the source and destination ports are in the range 62616 62631, and can then be encoded with only 4 bits
- L: 1 bit, indicates if the length field of the datagram has been removed



UDP datagram with HC1 and HC2

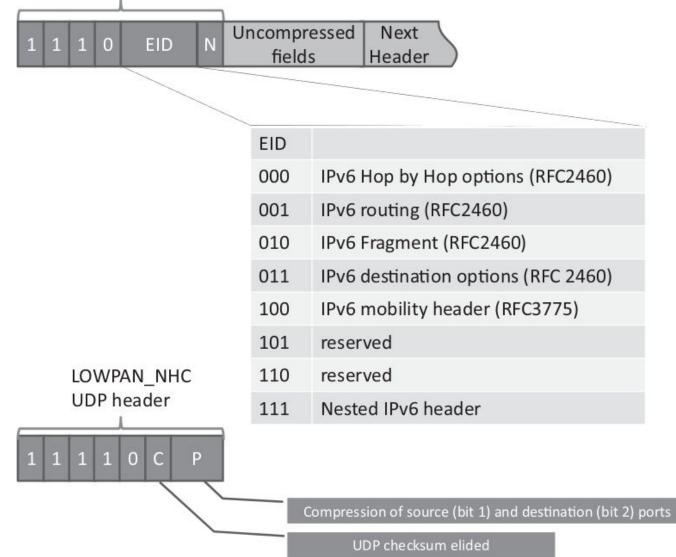
W COMPLUTENSE HC1/HC2 header compression summary

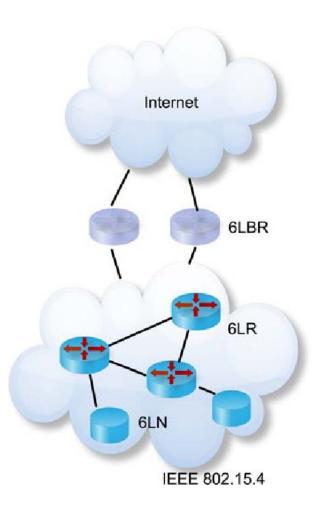

- Optimal compression for *unicast link-local* packets
 - From 48 bytes to 7 bytes (dispatch + 2 ip + 4 UDP)

Minimal UDP/6LoWPAN (16-bit addressing)

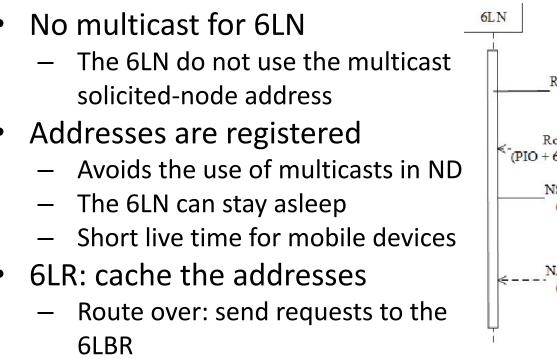
Low effectiveness for Global Unicast addresses

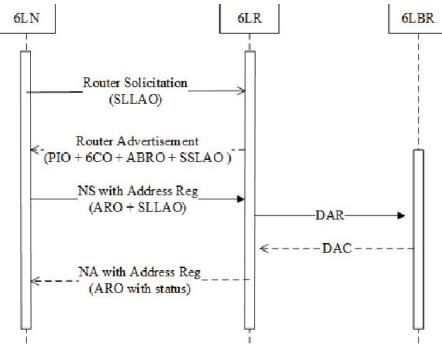
COMPLUTENSE Context based IPHC compressed header




LOWPAN_NHC compressed options

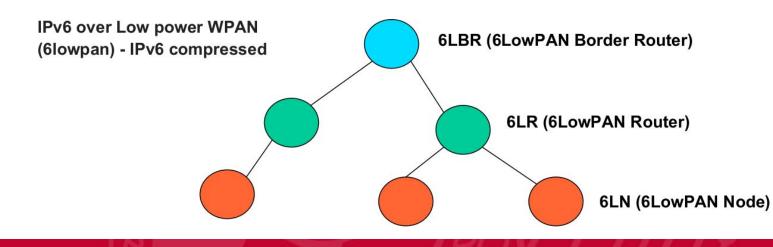
LOWPAN_NHC


base header for IPv6 extensions


- RCFC 6775
- 6LoWPAN Border Router (6LBR)
 - Or Edge Router
 - Has the authority to establish the prefix
- 6LoWPAN Router (6LR)
 - Intermediate routers
 - Only in route-over
- 6LOWPAN Node (6LN)
 - The rest of the nodes

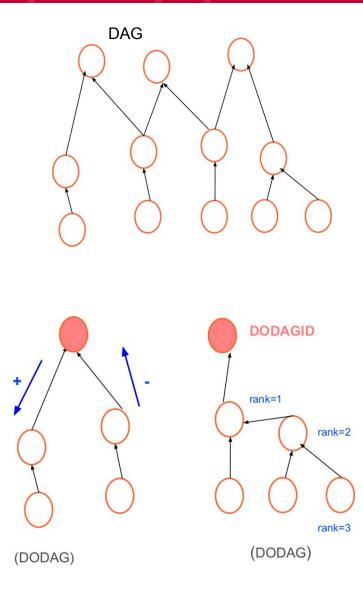
COMPLUTENSE Neighbour Discovery (ND) in 6LoWPAN

 Duplicate Address Request (DAR) and Confirmation (DAC)

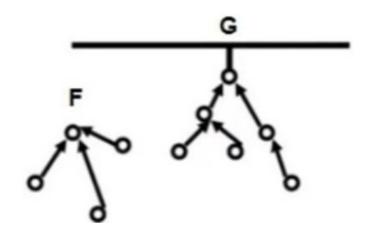


SLLAO: Source Link Layer Address OptionABRO: Authoritative Border Router Option6CO: 6LoWPAN context optionsPIO: Prefix information optionsARO: Address Registration Option

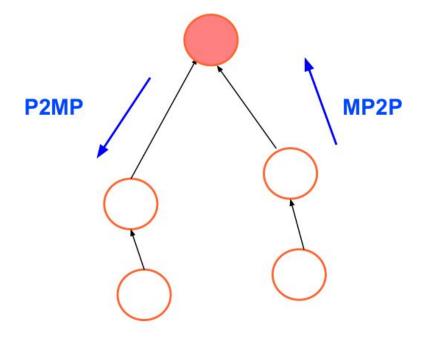
RPL


- IPv6 Routing Protocol for Low Power Lossy Networks
 - Specified by the IETF, <u>RFC6550</u>
- Distance Vector Routing Protocol
 - Each node maintains a table of distances to all the other nodes of the network
 - address of next hop
 - distance/cost
 - Simpler and less overhead than link state algorithms
- Intra domain routing
- Topological changes are notified to neighbors

Basic terminology

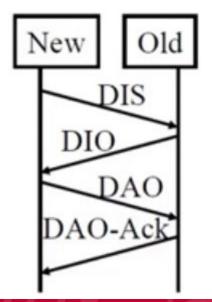

- DAG: Acyclic Directed Graph
 - Oriented edges
 - No cycles
 - A node can have more than one edge
- DAG Root:
 - A node with no output edges
- DODAG: Destination Oriented DAG
 - A DAG with only one root
- DODAG Root:
 - The root of the DODAG
 - Act as a border/edge router
 - Has a DODAGID
- Up: upstream flow
- Down: downstream flow
- Rank: distance to the root

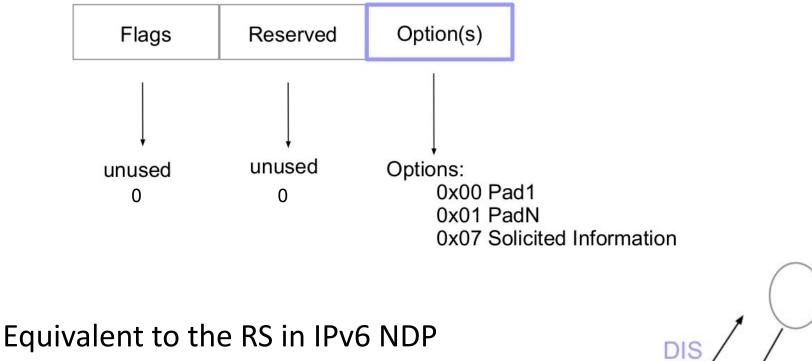
Basic terminology


- Objective function:
 - How to compute the rank
- RPLInstanceID: unique id for the RPL network
- RPL Instance:
 - A set of one or more DODAGs with the same RPLInstanceID and objective function
 - A node may belong to more than one DODAGs
- Storing Nodes:
 - store the complete routing table
- Non Storing Nodes:
 - Only store the parents
- Grounded DODAG:
 - Can reach the GOAL
- Floating DODAG:
 - Cannot reach the GOAL

Traffic flow

- Three flows
 - Multi Point to Point (MP2P)
 - Point to Multi Point (P2MP)
 - Point to Point (P2P)
- RPL is optimised for MP2P




New ICMPv6 control packets

Type=155	Code	Checksum		
		Base		
Option(s)				

- Code identifies the type of message
 - 0x00: DODAG Information Solicitation (DIS)
 - 0x01: DODAG Information Object (DIO)
 - 0x02: Destination Advertisement Object (DAO)
 - 0x03: DAO-ACK

 Sent upstream to request a DODAG Information Object (DIO)

DODAG Information Object (DIO)

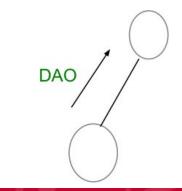
RPLInstanceID		elD	Version Number	Rank			
G	0	МОР	Prf	DTSN	Flags Reserved		
				DODAGIE)		
IPv6 address of the DODAG root							
	Option(s)						

Field	Interpretation
G	1 - Grounded, 0 - Floating
Prf	DAGPreference 0-7, 0 lower preference
	Destination Advertisement Trigger Sequence Number, to maintain downward routes
Flags	no usado, deben ser 0
Reserved	no usado, deben ser 0

Sent periodically by routers or as a response to a DIS Sends downstream the DODAG Information

MOP	Operation Mode
0	Not maintain downward routes
1	Non Storing Mode
2	Storing Mode without multicast
3	Storing Mode with multicast
4-7	reservado

Туре	Options
0x00	PAD1
0x01	PADN
0x02	DAG Metric Container
0x03	Routing Information
0x04	DODAG Configuration
0x08	Prefix Information


DODAG Advertisement Object (DAO)

RPLInstanceID	к	D	Flags	Reserved	DAOSequence	
	DODAGID					
	IPv6 address of the DODAG root					
Option(s)						

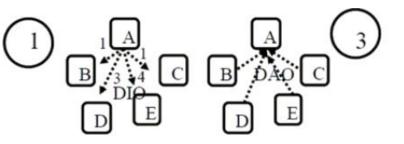
Field	Interpretation	T
K	Requiere DAO-ACK	0
D	DODAGID present	0
Flags	not used, 0	0
Reserved	not used, 0	0
DAOSequence	Sequence number copied on the DAO-ACK	0

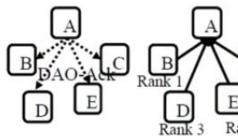
Туре	Options
0x00	PAD1
0x01	PADN
0x05	RPL Target
0x06	Transit Information
0x09	RPL Target Descriptor

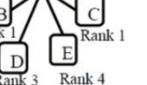
• Used to send information upwards

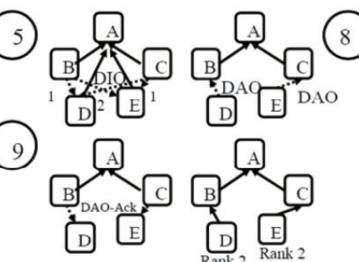
DAO-ACK

RPLInstanceID	D	Reserved	DAOSequence	Status			
		DODAGI	D				
	IPv6 address of the DODAG root						
		Option(5)				

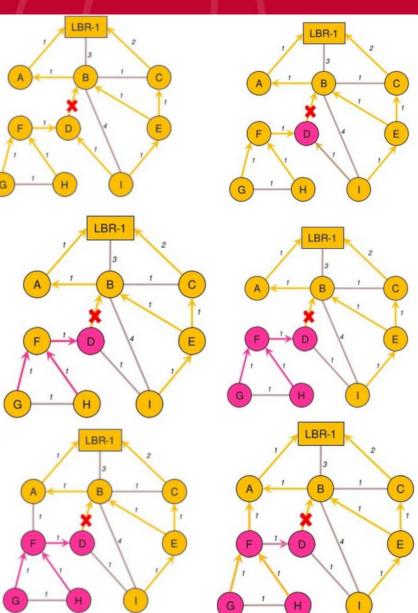

Status	Interpretation
0	Aceptado sin condiciones
1-127	Aceptado, pero se sugiere buscar un padre distinto
128-255	Rechazado, el nodo que envía el DAO-ACK rechaza actuar como padre


Sent as response to a DAO message




DODAG formation

- 1. The DODAG Root (A) sends DIO
- 2. On reception the nodes compute the rank to A
- 3. The nodes send a DAO
- El DODAG Root accepts confirms al with DAO-ACK (accepts)
- 5. Nodes start sending their own DIO
- 6. D observes that it will have a better (rank through B
- 7. E observes the same with C
- 8. D and E send DAO messages to B and C
- B and C confirm with a DAO-ACK (accept)



Broken Link

- 1. Link between D and B breaks
- 2. D sends a DIO to notify the changes in its sub-DAG
 - I remains in the DODAG through E
 - I removes D from the list of parents
- 3. F sends DIO to G and H
- 4. G and H join the floating DODAG
- 5. F receives a DIO from A
- 6. F sends DAO to A and joins again the DODAG LBR-1
 - Removes D from the list of parents

COMPLUTENSE Help for the Lab assignment

- You will use Cooja to simulate a 6LoWPAN network that uses RPL
 - <u>https://sourceforge.net/projects/contiki/files/Instant%20Contiki/</u>
 - # cd ~/contiki/tools/cooja/
 - # ant run
- You can analyze the network traffic with wireshark by exporting PCAP files of the simulated traffic
 - You can eliminate duplicate packets with the edicap tool:

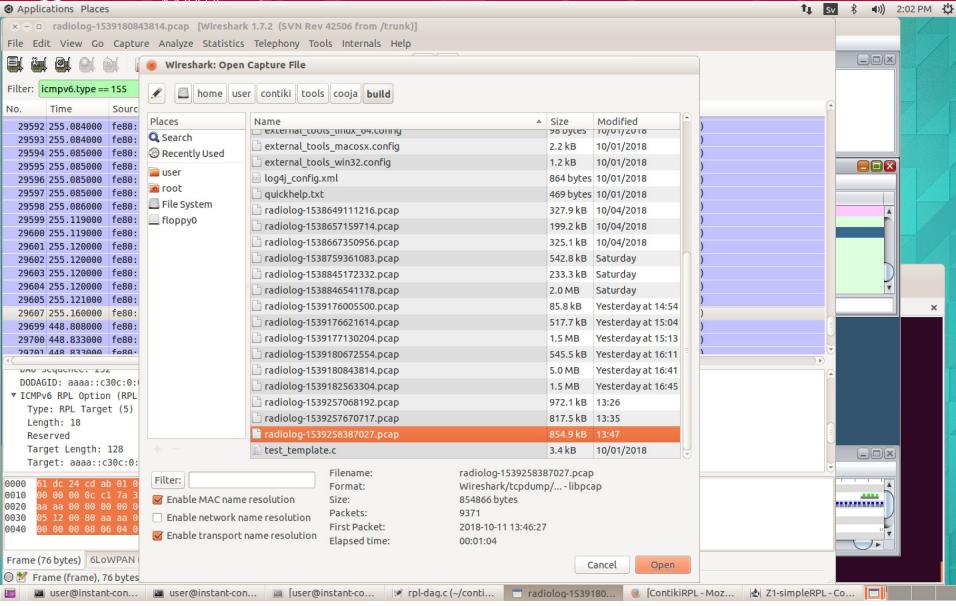
editcap -d original_file.cap filtered-output.cap

- To infer the DODAG topology you can
 - Filter the DIO and DAO messages
 - Activate the debug information in ~/contiki/core/net/rpl/rpl-dag.c and call call rpl_print_ neighbor_list() from the rpl_process_dio() function
 - Filter udp messages and analyse the 802.15.4 addresses to see the preferred routes for the UDP packets
 - Move/eliminate/add nodes and see how the RPL network converges

COMPLUTENSE Open radio messages window

Applications Places			1 ↓ sv ∦ 4 0) 1	1:24 PM 🔱
🛞 🗆 🗉 My simulation - Cooja: The Contiki Network	Simulator			
<u>File Simulation Motes</u> <u>Tools</u> Settings <u>H</u> elp				
Network	Simulation control 📃 🗐 🛛	▼ Notes		
View Zoom Mote output	Run Speed limit	Enter notes here		
Timeline Breakpoints	Start Pause Step Reload			б.с х 🕨
Radio messages				
Simulation script editor	Time: 00:00.000			
Buffer view	Speed:			
Base RSSI		Moto output		1
Mote radio duty cycle	File Edit View	Mote output		
Mote Information	Time Mote Message			
→ → → → → → → → → → → → → → → → → → →	Time Mote Message			
Msp CLI				
Msp Code Watcher				
Msp Stack Watcher	+			
Msp Cycle Watcher				
Serial Socket (SERVER)				
Collect View	Filter:			
				1
	Timeline show	ing 11 motes		
File Edit View Zoom Events Motes				
1			A	
2				
2 3 4				
			×	
)►	1
netstat -nr awk ' user@instant-contik	{ if (\$2 == "tun6 /* Send no i:r/contiki/tools	o-path DAO only to preferred parent, if any */	Tab Width: 8 🔹 🛛 Ln 834, Col 20	INS
	user@instant 📓 [user@instant		ContikiRPL	CVII

52


COMPLUTENSE Select PCAP file generation

Applications Places

Application	ons Places						
SOD M	y simulation - Co	oja: The Contiki N	etwork S	imulator			
<u>F</u> ile <u>S</u> imulati	on <u>M</u> otes <u>T</u> ools s	Settings <u>H</u> elp					
•	Netv	vork		💌 s	mulation control 💶 🗙	Notes	
View Zoom	1			Run Speed		Enter notes here	
	7			Start Time: 00:00 Speed:	Pause Step Reload	5.c	×
	2	5				Mote output	
		9		File Edit V	iew		
	3	6		Time Mote	Message		
				Filter:		Radio messages: showing 0/0 packets File Edit Analyzer 6LoWPAN Analyzer 6LoWPAN Analyzer with PCAP	
•					Timeline show	ving 11 motes	
	iew Zoom Events	Motes					
1 2 3 4 5		netstat [°] -nr	awk '{	if (\$2 _==	"tune /* Send n	o-path DAO only to preferred parent, if any */	
		user@instant-	contiki	:~/contiki	/tools	C 🔻 Tab Width: 8 👻 🛛 Ln 834, Col 20	INS
🔳 🔲 [u:	ser@instant	🛃 My simulation	. 🔳 US	ser@instant	🔳 [user@instant	🗊 rpl-dag.c (~/c 📃 [radiolog-153 🗟 build 🧕 ContikiRPL 🛃	

a a a part a bla

COMPLUTENSE Open the PCAP file with Wireshark

