
Bluetooth Low Energy - 2
Networks and Protocols 1

Facultad de Informática

2

L2CAP

A
le

rt
N

ot
ifi

ca
tio

n

B
lo

od
 P

re
ss

ur
e

G
lu

co
se

H
ea

rt
R

at
e

H
ID

 o
ve

r G
AT

T

P
ro

xi
m

ity

P
ro

pr
ie

ta
ry

GATT GAP

SMPATT

L2CAP

Host Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

P
ro

fil
es

H
os

t
C

on
tro

lle
r

3

L2CAP

• Creates logical channels
– From/To a pair of services in a pair of devices
– Two devices can maintain several active channels at the same

time
• Static channels

– Exist once two devices create a connection
– Do not require additional configuration

• Dynamic channels
– Have a channel id per connection

• 16-bit channel ids
– 0x0004 used for the ATT protocol (static)
– 0x0006 used for the SMP protocol (static)
– 0x0040 – 0xFFFF for connection oriented channels (dynamic)

4

Attribute Protocol (ATT)

A
le

rt
N

ot
ifi

ca
tio

n

B
lo

od
 P

re
ss

ur
e

G
lu

co
se

H
ea

rt
R

at
e

H
ID

 o
ve

r G
AT

T

P
ro

xi
m

ity

P
ro

pr
ie

ta
ry

GATT GAP

SMPATT

L2CAP

Host Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

P
ro

fil
es

H
os

t
C

on
tro

lle
r

5

Attribute Protocol (ATT)

• Provides an attribute interchange service in a connection
• Client-server protocol model

– The server exposes an attribute table
– The client can discover, read or write those attributes
– The server can also send notifications or indications of its attributes

• The ATT client sends commands, requests and confirmations
to the ATT server

• The ATT server sends responses, notifications or indications to
the ATT client

• A command can be used to read, write or discover the
attributes of the server

• The maximum payload size is 23 bytes

6

Attributes

• An attribute is a labeled addressable value
– Each device has several attributes stored as a table
– GATT services and characteristics are represented as attributes

• Value: represents the exposed data
• Handle: is the attribute identifier/address in the device
• Type: encodes what type of data is the Value (temp, pressure…)

– Expressed with a Universally Unique Identifier (UUID)
– Registered types can be encoded with only 2 bytes

• Permissions: permitted accesses and security requirements
– Cannot be accessed using ATT
– Write only Attributes are control points

7

ATT: some available messages

8

Structure of the attribute table

• The ATT server
stores the
attributes as a
table

• The first 6 rows
are mandatory,
available in all
ble servers

9

ATT Protocol: basic operations

• Request

• Response

• Command

• Indication

• Confirmation

• Notification

10

ATT: Request

• A client sends a Request to request some
information from the server, and waits for his
response
– Requests are sent one by one
– Only two responses possible: the result of the

operation requested or error and the reason for it

11

ATT: Command

• Requests to perform some operation/action on
the server

12

ATT: Indication

• The server indicates to the client that an
attribute has changed its value, without an
explicit request from the client
– Indications must be confirmed by the client

13

ATT: Notification

• Similar to an Indication but the client does not
send confirmations for the notifications

14

ATT: example

• Find Information Request
– Indicates the range of handles for which the information is requested

15

Generic Attribute Profile (GATT)

A
le

rt
N

ot
ifi

ca
tio

n

B
lo

od
 P

re
ss

ur
e

G
lu

co
se

H
ea

rt
R

at
e

H
ID

 o
ve

r G
AT

T

P
ro

xi
m

ity

P
ro

pr
ie

ta
ry

GATT GAP

SMPATT

L2CAP

Host Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

P
ro

fil
es

H
os

t
C

on
tro

lle
r

16

Generic Attribute Profile (GATT)

• GATT defines:
– The way the services and information of a server has to be encoded as

a hierarchy of Attributes
– A simple API to manage the ATT protocol to work with these attributes

• Specifies how to advertise, read, write and notify the attributes exposed by a
server

• GATT Roles:
– Client:

• Sends commands and requests to the server
• Receives responses, indications and notifications from the server

– Server
• Sends responses, indications and notifications to the client
• Receives commands and requests from the client

17

GATT: attribute hierarchy

• Profile
– contains one or more

services
• Service

– a set of characteristics
– optionally include other

services
• Characteristic

– a value
– a set of descriptors

(additional information)

18

Service

• Is a collection of characteristics and a specified behaviour
exposed through these characteristics

• The set of characteristics and the associated behaviour form
the interface of the service
– The behaviour may not be altered in future versions

• To extend a service, we can build another service that
includes the former
– It is a form of inheritance
– This way the backward compatibility is assured

• Two types
– Primary: service that is not included by other services, exposes

the functionality of a device
• A list of primary services can be requested through GATT and ATT

– Secondary: referenced by other services

19

Define the service

• It is composed of:
– a service declaration
– optional inclusion definitions
– optional characteristics

• They must appear in order in the ATT table
– the definition attribute of a service ends the previous service

• The service definition attribute contains:
– Type: UUID of primary or secondary service declaration
– Value: UUID of the service

• The service inclusion attribute contains:
– Type: include UUID
– Value: the Handle of the included service, End Group Handle and

Service UUID

20

Characteristics

• A characteristic represents a value:
– E.g.: temperature, heart rate,…

• Composed of 3 basic elements:
– Declaration attribute

• starts the characteristics and contains its properties
– Value attribute

• contains the value of the characteristic
– Descriptor attributes

• Optional, contain additional information about the
characteristic

21

Characteristic Declaration Attribute

• An attribute with
– Type: UUID for Characteristic (0x2803)
– Value: composed of

• Properties: if the value attribute can be read,
written, notifications…

• handle the handle of the characteristic value
attribute

• UUID for the type of value
– It will be the same UUID used in the value attribute

22

Characteristic Value Attribute

• Contains:
– Type: the UUID indicated in its declaration
– Value: the characteristic value

• Must come just after the characteristic declaration
• The access permissions are exposed in the properties field of

the characteristic declaration attribute, not in the attribute
permissions field of this attribute

23

Characteristic Descriptor Attributes

• Provide additional information about the value
– For instance, how to display it, where the sensor is located, …

• Some characteristics may require the presence of some
descriptors (indicated in its properties)
– Characteristic Extended Properties
– Characteristic User Description
– Client Characteristic Configuration
– Server Characteristic Configuration
– Characteristic Presentation Format
– Characteristic Aggregation Format

24

An example: Heart Rate Service

Service declaration

Characteristic declaration

Characteristic value

Characteristic descriptor

25

GATT: discovery procedures

• When a client connects to a server for the first time it
does not know its structure
– The handles may be cached for the conection
– If the server has the ServiceChanged characteristic, the client

must subscribe itself to notifications
– If the devices are bonded, the cached information can be kept

for future connections

• The client should first discover the primary services, and
use their range of handles to discover:
– Secondary services referenced by the primary service

– The characteristics of the service and their descriptors

• Once the structure is known, the client can proceed to
read/write the characteristic values

26

GATT: discovery procedures

• Procedures to discover services
– Discover All Primary Services

• ReadByGroupTypeRequest with handles 0x0001 to 0xFFFF and type
Primary Service

– Discover Primary Service By Service UUID
• FindByTypeValueRequest with handles 0x0001 to 0xFFFF, type

Primary Service, and the UUID of the service

– Find Included Services
• To get the secondary services included by other service

• Procedures to discover characteristics
– Discover all characteristics of a service

• ReadByTypeRequest(HandleRange, “Characteristic”)

– Discover all characteristic descriptors
• FindInformationRequest(HandleRange of declaration)

27

GATT: procedures on characteristics

• A client can initiate 2 procedures on
characteristics and their descriptors (Vol3,
partG, 4.2):
– Read its value: ReadRequest

• Params: characteristic handle and type (UUID)
• ReadBlobRequest for attributes larger than 22 bytes (or

variable size)

– Write its value: WriteRequest
• Params: characteristic handle and type (UUID)
• Sequence of PrepareWriteRequest followed by one

ExecuteWriteRequest for large values

28

GATT: server characteristic procedures

• Two procedures can be initiated by the GATT server:
– Notifications

• No flow control (no confirmation)

• The client may miss the notification

• Not reliable

• ATT message: HandleValueNotification

– Indications
• Have control flow: the server cannot send a new indication until the

previous one has been confirmed by the client
• ATT message: HandleValueIndication

– Confirmed by the client with a HandleValueConfirmation ATT message

• Enabled by each characteristic on its Client Characteristic
Configuration Descriptor (CCCD)
– The CCCD value is preserved between connections for bonded

devices
– Each client obtains its own CCCD instance

29

Generic Access Profile (GAP)

A
le

rt
N

ot
ifi

ca
tio

n

B
lo

od
 P

re
ss

ur
e

G
lu

co
se

H
ea

rt
R

at
e

H
ID

 o
ve

r G
AT

T

P
ro

xi
m

ity

P
ro

pr
ie

ta
ry

GATT GAP

SMPATT

L2CAP

Host Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

P
ro

fil
es

H
os

t
C

on
tro

lle
r

30

GAP: Generic Access Profile

• Defines how a device can discover other devices and connect to
them

• Defines the roles for the devices
– Broadcaster

• A device that sends Advertising Packets
• Can broadcast data
• Only needs an emitter

– Observer
• Listens to broadcasters and transmits the information to the application

– Peripheral
• A device that announces it self with Connectable Advertising Packets
• Becomes the slave once connected
• Needs emitter and receiver

– Central
• Device that initiates connections with a Peripheral
• Becomes the master once connected

• A device can manage several GAP profiles simultaneously
– Can be a broadcaster and peripheral at the same time

31

GAP: states

32

Broadcast and Observation

A device can send information (broadcaster) to one or more
listening devices (observers)

• The observers do not acknowledge the packets
• The observer listens without knowing if he is going to

receive something

Each advertising packet contains as much as 31 bytes

• It can indicate if Scan Requests are allowed
• Can indicate that it is an extended advertisement (BT 5.0)

33

Discoverability modes

• Used in the Peripheral role
• Three modes

– Non-discoverable: devices that do not require its presence to be
perceived and do not want to receive requests

• Only send ADV_NONCONN_IND o ADV_SCAN_IND

– Limited discoverable: devices that want to be discovered in a
limited time period

• Must activate the Limited Discoverable flag in the adverisement
• The central has to complete the Limited Discovery o General Dicsovery

procedure

– General discoverable: devices that want to be discovered at any
moment, to establish a connection with a central device.

• They have to activate the General Discoverable flag in the advertisements
• The central has to complete the General Discovery procedure

34

Discoverability procedures

• Limited Discovery
– The central initiates this procedure without a white list
– GAP analyses all the received advertisements and only

communicates to the application those that have the Limited
Discovery Flag active

• General Discovery
– The central initiates this procedure without a white list
– GAP analyses all the received advertisements and only

communicates to the application those that have the Limited
Discovery or General Discovery Flags activated

35

Connection establishment

• The peripheral can be in one of the following modes:
– Non-connectable: a peripheral in this mode can only send

ADV_NONCONN_IND or ADV_SCAN_IND advertisements
• No central can connect to these peripherals

– Directed connectable: a device in this mode sends
ADV_DIRECT_IND with high frequency, indicating the central they
want to connect to.

• Fast connection mode

– Undirected connectable: standard mode for a peripheral that
wants to connect to a central, sends ADV_IND advertisements

36

Connection establishment

• The central can initiate the following procedures:
– Auto-connection establishment: to connect to a known device,

with no priorities.
• The application provides a white list of known devices to which it wants to

connect.
• GAP initiates the connection with the first device from the list discovered.

– General connection establishment: used to connect to an
unknown device

• The central first scans to detect devices sending advertisements
• The application must then select the device for the connection

– Selective connection establishment: used to connect to a known
device

• Like the general, but using a white list to filter out devices

– Direct connection establishment: initiates the connection
procedure with a known device

• Can fail if the device is not present or is not in a connectable mode

37

Other GAP procedures

• Name discovery:
– Allows the central to obtain the name of a connected device (string

of utf-8 characters)

• Connection parameter update:
– Changes the parameters of the connection (connection interval,

slave latency, etc.)
– The peripheral can only request it, the central is the one that has

to make the changes

• Terminate connection

38

GAP + Security Manager (SMP)

A
le

rt
N

ot
ifi

ca
tio

n

B
lo

od
 P

re
ss

ur
e

G
lu

co
se

H
ea

rt
R

at
e

H
ID

 o
ve

r G
AT

T

P
ro

xi
m

ity

P
ro

pr
ie

ta
ry

GATT GAP

SMPATT

L2CAP

Host Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

P
ro

fil
es

H
os

t
C

on
tro

lle
r

39

Security aspects in BLE

• Authentication
– That the other is who it says
– BLE: PassKey, OOB or numeric

• Integrity
– Others cannot modify the message
– BLE: Message Authentication Code (MAC), 64 bits with AES-128

• Confidentiality
– Others cannot read the transferred messages
– BLE: AES-CCM encryption

• Privacy
– Others cannot identify the node
– BLE: random addresses

40

BLE: phases, pairing and bonding

Pairing

Bonding

E
ncrypted

41

Pairing

Phase 1:

• Interchange of I/O capacities and security requirements

Phase 2:

• Legacy connections (BT 4.0-4.1): weaker
– Short Term Key (STK) generated from a shared Temporal Key (TK)

and other parameters (device addresses, type of devices, …)
– The STK is used to encrypt the communication afterwards

• Secure connections (from BT 4.2): much more robust
– A Long Term Key is generated with an Elliptic-curve Diffie–Hellman

(ECDH) procedure (uses public-private key pairs)
– The LTK is used to encrypt the communication afterwards

42

Pairing methods

Legacy connections (BT 4.0-4.1):

• Just Works
• PassKey -- Authenticated
• Out of Band (OOB) -- Authenticated

Secure connections (from BT 4.2): much more robust

• Just Works
• PassKey -- Authenticated
• Out of Band (OOB) -- Authenticated
• Numeric -- Authenticated

The methods for legacy and secure connections are different

43

IO capabilities -> authentication method

44

Pairing Request and Pairing response

Pairing
Request

45

E.g.: pairing in LE secure connections

Initial public key interchange and generation of the DHKey
shared secret

46

E.g.: LE secure pairing j. works & numeric

Numeric: Va & Vb are
shown to the user that
can confirm them

47

E.g.: LE secure LTK generation

48

Bonding

In phase 1 the bonding flag is checked

• Extra keys are generated for future connections
– Identity Resolving Key (IRK): 128 bits for random address

generation and resolution
– Connection Signature Resolving Key (CSRK): 128 bits for signature

verification
– Long Term Key (LTK): 128 bits to encrypt communications (legacy)
– Encrypted Diversifier (EDIV): 16 bits used to identify the LTK

(legacy)
– Random Number (Rand): 64 bits used to identify the LTK (legacy).

• If bonded, the devices can omit the pairing and use the
stored keys

49

Security Modes

• Required by devices and/or services
• Security Mode 1:

– Level 1 -> security is not required
– Level 2 -> no authentication required, but we want confidentiality
– Level 3 -> authentication and confidentiality are required
– Level 4 -> LE secure connection required, with autenticación and

confidentiality

• Security Mode 2:
– Level 1 -> unauthenticated with signatures
– Level 2 -> authenticated with signatures

50

References

• Bluetooth core specification
– https://www.bluetooth.com/specifications/bluetooth-co

re-specification/

• Kevin Townsed, Carles Cufí, Akiba & Robert
Davidson, “Getting Started with Bluetooth Low
Energy”, 2014, O’Reilly.

• Robin Heydon, “Bluetooth Low Energy: The
Developer's Handbook”, 2013, Prentice Hall

• SDK Texas instruments

– http://dev.ti.com/tirex/content/simplelink_cc264
0r2_sdk_1_35_00_33/docs/ble5stack/ble_user_g
uide/html/ble-stack/index.html

https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/index.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/index.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/index.html

