UNIVERSIDAD

COMPLUTENSE

MADRID

Bluetooth Low Energy - 2

Networks and Protocols 1

Facultad de Informdtica

s9|ljoid 1SOH Ja|jonuo)

* Creates logical channels
— From/To a pair of services in a pair of devices
— Two devices can maintain several active channels at the same
time
 Static channels
— Exist once two devices create a connection
— Do not require additional configuration
* Dynamic channels
— Have a channel id per connection

e 16-bit channel ids
— 0x0004 used for the ATT protocol (static)
— 0x0006 used for the SMP protocol (static)
— 0x0040 — OXFFFF for connection oriented channels (dynamic)

=
<
Ie
O
O
)
O
e
(o
Q
)
>
O
\L
s
i
<

s9|ljoid 1SOH Ja|jonuo)

Attribute Protocol (ATT)

Provides an attribute interchange service in a connection
Client-server protocol model

— The server exposes an attribute table

— The client can discover, read or write those attributes

— The server can also send notifications or indications of its attributes

The ATT client sends commands, requests and confirmations
to the ATT server

The ATT server sends responses, notifications or indications to
the ATT client

A command can be used to read, write or discover the
attributes of the server

The maximum payload size is 23 bytes

Attributes

implementation

2 Octets 2 or 16 Octets variable length specific
A A 8 A
I Y T Y)
Attribute Handle Attribute Type Attribute Value Attribute Permissions

An attribute is a labeled addressable value
— Each device has several attributes stored as a table
— GATT services and characteristics are represented as attributes
Value: represents the exposed data
Handle: is the attribute identifier/address in the device
Type: encodes what type of data is the Value (temp, pressure...)
— Expressed with a Universally Unigue Identifier (UUID)
— Registered types can be encoded with only 2 bytes
Permissions: permitted accesses and security requirements
— Cannot be accessed using ATT
— Write only Attributes are control points

) COMPLUTENSE ATT: some available messages

MADRID

Message Request Parameters Response Parameters
e Opcode in Error, Handle
in Error, Error Code
Exchange MTU Client Rx MTU Server Rx MTU

Starting Handle,

Find Information Ending Handle

(Handle, Type)

Starting Handle,

(Found Handle,

Find By Type Value Ending Handle, End Group Handle)
Type, Value
Starting Handle,
Read By Type Ending Handle, Tvpe Length, (Handle, Value)
Read Handle Value
Read Blob Handle, Offset Part Value
Read Multiple (Handle)* (Value)
Starting Handle
3 2 (Handle, End Group
Read By Group Type Ending Handle, Handle, Value)
: Group Type
Write Handle, Value -
Prepare Write Handle, Value Handle, Value
Execute Write Flags -

MADRID

Structure of the attribute table

e The ATT server
stores the
attributes as a
table

* The first 6 rows
are mandatory,
available in all
ble servers

'?f:r:’(;‘: Attribute Type Attribute Value
0x0001 Primary Service GAP Service
0x0002 Characteristic Device Name
0x0003 Device Name "Proximity Tag"
0x0004 Characteristic Appearance
0x0005 Appearance Tag

0x0006 Primary Service GATT Service
0x0007 Primary Service Tx Power Service
0x0008 Characteristic Tx Power

0x0009 Tx Power -4dBm

0x000A Primary Service Immediate Alert Service
0x000B Characteristic Alert Level

0x000C Alert Level

0x000D Primary Service Link Loss Service
0x000E Characteristic Alert Level

0x000F Alert Level "high"

0x0010 Primary Service Battery Service
0x0011 Characteristic Battery Level
0x0012 Battery Level 75%

0x0013 Characteristic Presentation Format | uint8, 0, percent
0x0014 Characteristic Battery Level State
0x0015 Battery Level State 75%, discharging
0x0016 Client Characteristic Configuration 0x0001

6 COMPLUTERSE ATT Protocol: basic operations

* Request

* Response

e Command

* Indication

* Confirmation

* Notification

ATT: Request

* Aclient sends a Request to request some
information from the server, and waits for his
response
— Requests are sent one by one

— Only two responses possible: the result of the
operation requested or error and the reason for it

(\’ Client ‘>' (’ Server >

ATT Request

>

ATT Response

) ouLiERSE ATT: Command

* Requests to perform some operation/action on
the server

< Client >| (Server >

ATT Command

ATT: Indication

e The server indicates to the client that an
attribute has changed its value, without an

explicit request from the client
— Indications must be confirmed by the client

(o) (o)

ATT Indication

ATT Confirmation

¢ 9) COMPLUTENSE ATT: Notification

e Similar to an Indication but the client does not
send confirmations for the notifications

(om) (o)

ATT Notification

) COMPLUTENSE ATT: example

MADRID

* Find Information Request
— Indicates the range of handles for which the information is requested

e ™\
< Client) < Server |
P v,

p Find Information Request (0x0100, 0x01FF)

« Find Information Response (0x0100, Primary
Service, 0x0101, Characteristic, 0x0102,
Battery Level, 0x0103, Client Characteristic
Configuration)

p| Find Information Request (0x0104, 0x01FF)

- Find Information Response (0x0104,
Characteristic Presentation Format)

p| Find Information Request (0x0105, 0x01FF)

= Error Response ()

=
<
=2
D
4—
O
| -
o
Q
=
=
O
o
s
i
<
O
FuI
Q
-
()
O

s9|ljoid 1SOH Ja|jonuo)

Generic Attribute Profile (GATT)

e GATT defines:

— The way the services and information of a server has to be encoded as
a hierarchy of Attributes

— Asimple API to manage the ATT protocol to work with these attributes

* Specifies how to advertise, read, write and notify the attributes exposed by a
server

e GATT Roles:

— Client:

* Sends commands and requests to the server

* Receives responses, indications and notifications from the server
— Server

* Sends responses, indications and notifications to the client
* Receives commands and requests from the client

e
== Response

Request

Computer Sensor

* Profile
— contains one or more
services

e Service
— a set of characteristics

— optionally include other
services

 Characteristic
— a value

— a set of descriptors
(additional information)

Profile

Service

Characteristic

Properties

.............................

.............................

.............................

..................................

..................................

..............................

..............................

..............................

..............................

..................................

..............................

..............................

..............................

...

Service

* |s a collection of characteristics and a specified behaviour
exposed through these characteristics

e The set of characteristics and the associated behaviour form
the interface of the service
— The behaviour may not be altered in future versions

 To extend a service, we can build another service that
includes the former
— Itis a form of inheritance
— This way the backward compatibility is assured

* Two types

— Primary: service that is not included by other services, exposes
the functionality of a device
* Alist of primary services can be requested through GATT and ATT

— Secondary: referenced by other services

Define the service

* |tis composed of:

— a service declaration

— optional inclusion definitions

— optional characteristics
* They must appear in order in the ATT table

— the definition attribute of a service ends the previous service
* The service definition attribute contains:

— Type: UUID of primary or secondary service declaration
— Value: UUID of the service

Attribute Attribute

Handle Attribute Type Attribute Value Permission

OxNNNN 0x2800 — UUID for «Primary | 16-bit Bluetooth UUID or | Read Only,
Service» OR 0x2801 for 128-bit UUID for Service | No Authentication,
«Secondary Service» No Authorization

* The service inclusion attribute contains:
— Type: include UUID
— Value: the Handle of the included service, End Group Handle and

Service UUID | puibute | attribute
Handle Type Attribute Value Attribute Permission
OXxNNNN 0x2802 — Included End Group | Service Read Only,
UUID for Service Handle UuID No Authentication,
«Include» Attribute No Authorization
Handle

Characteristics

* A characteristic represents a value:
— E.g.: temperature, heart rate,...

 Composed of 3 basic elements:
— Declaration attribute
e starts the characteristics and contains its properties
— Value attribute
* contains the value of the characteristic
— Descriptor attributes

e Optional, contain additional information about the
characteristic

Characteristic Declaration Attribute

Attribute | Attribute Attribute

Handle Types Attribute Value Permissions
OxNNNN | 0x2803-UUID Charac- | Character- Character- | Read Only,
for teristic istic Value istic UUID No Authentication,
«Characteristic» | Properties | Attribute No Authorization
Handle

 An attribute with

— Type: UUID for Characteristic (0x2803)
— Value: composed of

* Properties: if the value attribute can be read,
written, notifications...

 handle the handle of the characteristic value
attribute

e UUID for the type of value

— It will be the same UUID used in the value attribute

Characteristic Value Attribute

Attribute
Handle Attribute Type Attribute Value Attribute Permissions

OXNNNN ' Oxuuuu — 16-bit Bluetooth Characteristic Value | Higher layer profile or
UUID or 128-bit UUID for implementation specific
Characteristic UUID

 Contains:
— Type: the UUID indicated in its declaration

— Value: the characteristic value
* Must come just after the characteristic declaration

* The access permissions are exposed in the properties field of
the characteristic declaration attribute, not in the attribute
permissions field of this attribute

Characteristic Descriptor Attributes

* Provide additional information about the value

— For instance, how to display it, where the sensor is located, ...
* Some characteristics may require the presence of some

descriptors (indicated in its properties)

— Characteristic Extended Properties

— Characteristic User Description

— Client Characteristic Configuration

— Server Characteristic Configuration

— Characteristic Presentation Format

— Characteristic Aggregation Format

UNIVERSIDAD

COMPLUTENSE

MADRID

An example: Heart Rate Service

Heart Rate Service

i o Wl o W o B

DN BN BTN
[o W o Wl e
{ Characterstic - - o0n M CHAR | .iﬂ-“- RDIOxOOZ(IBS E
, T DN A
I e e |

S

ervice declaration |

C

haracteristic declaration |

C

haracteristic value |

C

haracteristic descriptor |

NVANVANZAN

GATT: discovery procedures

e When a client connects to a server for the first time it

does not know its structure
— The handles may be cached for the conection
— If the server has the ServiceChanged characteristic, the client
must subscribe itself to notifications
— If the devices are bonded, the cached information can be kept
for future connections

* The client should first discover the primary services, and
use their range of handles to discover:
— Secondary services referenced by the primary service
— The characteristics of the service and their descriptors

* Once the structure is known, the client can proceed to
read/write the characteristic values

GATT: discovery procedures

* Procedures to discover services

— Discover All Primary Services

* ReadByGroupTypeRequest with handles 0x0001 to OxFFFF and type
Primary Service

— Discover Primary Service By Service UUID

* FindByTypeValueRequest with handles 0x0001 to OxFFFF, type
Primary Service, and the UUID of the service

— Find Included Services
* To get the secondary services included by other service
 Procedures to discover characteristics

— Discover all characteristics of a service
* ReadByTypeRequest(HandleRange, “Characteristic”)

— Discover all characteristic descriptors
* FindInformationRequest(HandleRange of declaration)

GATT: procedures on characteristics

* A client can initiate 2 procedures on
characteristics and their descriptors (Vol3,
partG, 4.2):

— Read its value: ReadRequest

* Params: characteristic handle and type (UUID)

* ReadBlobRequest for attributes larger than 22 bytes (or
variable size)

— Write its value: WriteRequest
* Params: characteristic handle and type (UUID)

» Sequence of PrepareWriteRequest followed by one
ExecuteWriteRequest for large values

GATT: server characteristic procedures

 Two procedures can be initiated by the GATT server:

— Notifications
* No flow control (no confirmation)
* The client may miss the notification
* Not reliable
* ATT message: HandleValueNotification

— Indications

 Have control flow: the server cannot send a new indication until the
previous one has been confirmed by the client

» ATT message: HandleValuelndication
— Confirmed by the client with a HandleValueConfirmation ATT message

* Enabled by each characteristic on its Client Characteristic
Configuration Descriptor (CCCD)

— The CCCD value is preserved between connections for bonded
devices

— Each client obtains its own CCCD instance

o
<
&
i
=
O
| -
o
V)
V)
)
O
o
<
o
i
O
c
O
O

s9|ljoid 1SOH Ja|jonuo)

GAP: Generic Access Profile

* Defines how a device can discover other devices and connect to
them

e Defines the roles for the devices

— Broadcaster
* A device that sends Advertising Packets
e Can broadcast data
* Only needs an emitter
— Observer
* Listens to broadcasters and transmits the information to the application
— Peripheral
* A device that announces it self with Connectable Advertising Packets
* Becomes the slave once connected
* Needs emitter and receiver
— Central
* Device that initiates connections with a Peripheral
* Becomes the master once connected

* A device can manage several GAP profiles simultaneously
— Can be a broadcaster and peripheral at the same time

6 okitiies GAP: states

MADRID

Idle

Standby

—

Advertiser Scanner
Device Discovery 1

Initiator

g

Slave Master

Connection

Broadcast and Observation

A device can send information (broadcaster) to one or more
listening devices (observers)

 The observers do not acknowledge the packets
 The observer listens without knowing if he is going to
receive something

Each advertising packet contains as much as 31 bytes

* |t can indicate if Scan Requests are allowed
* Can indicate that it is an extended advertisement (BT 5.0)

Discoverability modes

 Used in the Peripheral role

e Three modes

— Non-discoverable: devices that do not require its presence to be
perceived and do not want to receive requests
« Only send ADV_NONCONN_IND o ADV_SCAN_IND
— Limited discoverable: devices that want to be discovered in a
limited time period
* Must activate the Limited Discoverable flag in the adverisement

* The central has to complete the Limited Discovery o General Dicsovery
procedure

— General discoverable: devices that want to be discovered at any

moment, to establish a connection with a central device.
* They have to activate the General Discoverable flag in the advertisements
* The central has to complete the General Discovery procedure

Discoverability procedures

* Limited Discovery
— The central initiates this procedure without a white list

GAP analyses all the received advertisements and only

communicates to the application those that have the Limited
Discovery Flag active

* General Discovery

The central initiates this procedure without a white list

GAP analyses all the received advertisements and only
communicates to the application those that have the Limited
Discovery or General Discovery Flags activated

Connection establishment

* The peripheral can be in one of the following modes:

— Non-connectable: a peripheral in this mode can only send
ADV_NONCONN_IND or ADV_SCAN_IND advertisements

* No central can connect to these peripherals
— Directed connectable: a device in this mode sends
ADV_DIRECT_IND with high frequency, indicating the central they

want to connect to.
Fast connection mode

— Undirected connectable: standard mode for a peripheral that
wants to connect to a central, sends ADV_IND advertisements

Connection establishment

 The central can initiate the following procedures:

— Auto-connection establishment: to connect to a known device,

with no priorities.
* The application provides a white list of known devices to which it wants to
connect.
* GAP initiates the connection with the first device from the list discovered.

— General connection establishment: used to connect to an

unknown device

* The central first scans to detect devices sending advertisements
* The application must then select the device for the connection

— Selective connection establishment: used to connect to a known

device
e Like the general, but using a white list to filter out devices

— Direct connection establishment: initiates the connection

procedure with a known device
e Canfail if the device is not present or is not in a connectable mode

Other GAP procedures

 Name discovery:
— Allows the central to obtain the name of a connected device (string
of utf-8 characters)
* Connection parameter update:
— Changes the parameters of the connection (connection interval,
slave latency, etc.)
— The peripheral can only request it, the central is the one that has
to make the changes

e Terminate connection

o
>
A
| -
Q
(o]0
(g
-
(g8
>
>
)
o
>
O
()
)
+
oo
<
O

sa|ljoid 1SOH Jajjonuo)

Security aspects in BLE

Authentication

— That the other is who it says

— BLE: PassKey, OOB or numeric

Integrity

— Others cannot modify the message

— BLE: Message Authentication Code (MAC), 64 bits with AES-128

e Confidentiality
— Others cannot read the transferred messages
— BLE: AES-CCM encryption

* Privacy

— Others cannot identify the node

— BLE: random addresses

BLE: phases, pairing and bonding

[Initiator] (Responder]
[l
Established LL connection

L, (Optional) Security Request
Pairing_Request
» Phase 1

Pairing_Response

o
Pairing over SMP:
= Legacy pairing or Secure Connections > Phase 2}
[Establishment of encrypted connection with key generated in phase 2)
m
- " Al
Key Distribution (@)
- ‘2
- Key Distribution Shaen 5
i —
Key Distribution . D
o
- J
v v N

Pairing

Phase 1:
* Interchange of I/O capacities and security requirements
Phase 2:

e Legacy connections (BT 4.0-4.1): weaker
— Short Term Key (STK) generated from a shared Temporal Key (TK)
and other parameters (device addresses, type of devices, ...)
— The STK is used to encrypt the communication afterwards
e Secure connections (from BT 4.2): much more robust
— A Long Term Key is generated with an Elliptic-curve Diffie—Hellman
(ECDH) procedure (uses public-private key pairs)
— The LTK is used to encrypt the communication afterwards

Pairing methods

Legacy connections (BT 4.0-4.1):

e Just Works

e PassKey -- Authenticated
* Out of Band (OOB) -- Authenticated

Secure connections (from BT 4.2): much more robust

e Just Works

 PassKey -- Authenticated
e QOut of Band (OOB) -- Authenticated
 Numeric -- Authenticated

The methods for legacy and secure connections are different

Responder

Display
Only

Display
YesNo

DisplayOnly

Just Works

Unauthenti-
cated

Just Works

Unauthenti-
cated

Display
YesNo

Just Works

Unauthenti-
cated

Just Works
(For LE
Legacy
Pairing)
Unauthenti-
cated

Numeric
Comparison
(For LE
Secure Con-
nections)

Authenti-
cated

O capabilities -> authentication

Initiator

Keyboard
Only

Passkey
Entry:
responder
displays, ini-
tiator inputs
Authenti-
cated

Passkey
Entry:
responder
displays, ini-
tiator inputs
Authenti-
cated

Nolnput
NoOutput

Just Works

Unauthenti-
cated

Just Works

Unauthenti-
cated

Keyboard
Display

Passkey
Entry:
responder
displays, ini-
tiator inputs
Authenti-
cated

Passkey
Entry (For
LE Legacy
Pairing):
responder
displays, ini-
tiator inputs
Authenti-
cated

method

Numeric
Comparison
(For LE
Secure Con-
nections)

Authenti-
cated

Initiator
Display Keyboard Nolnput Keyboard
Responder | DisplayOnly | YesNo Only NoOutput Display
Passkey Passkey Passkey Passkey
Entry: initia- | Entry: initia- | Entry: initia- Entry: initia-
tor displays, | tor displays, | tor and Just Works tor displays,
Keyboard responder responder responder Unauthenti- | responder
Only inputs inputs inputs inputs
Inpu P P cated P
Authenti- Authenti- Authenti- Authenti-
cated cated cated cated
Notrnit Just Works Just Works Just Works Just Works Just Works
olnpu
= Unauthenti- | Unauthenti- | Unauthenti- Unauthenti- Unauthenti-
NoOutput
cated cated cated cated cated
Passkey Passkey
Entry (For Entry (For
LE Legacy LE Legacy
Pairing): Pairing):
initiator dis- initiator dis-
Passkey plays, Passkey plays,
T responder . responder
Entry: initia- inbite Entry: inbuts
Kevboard tor displays, P responder Just Works L
eyboa i- ; i i-
Disyplay responder /(;\:tt:jml displays, ini- | ynaythenti- /(;\:tt::ntl
inputs tiator inputs | ateq
Authenti- Numeric Authenti- Numeric
cated Comparison | cated Comparison
(For LE (For LE
Secure Con- Secure Con-
nections) nections)
Authenti- Authenti-
cated cated

QO

E)comrivtevst Pairing Request and Pairing response

MADRID

Value Description
0x00 ' DisplayOnly
0x01 DisplayYesNo
0x02 | KeyboardOnly
0x03 NolnputNoOutput
0x04 | KeyboardDisplay
0x05-0xFF Reserved for future use
LSB oct.et. 0-, octet 1 _ oetet2’ B octet3 MSB
Pairing Eade=0xa Caplaobility dgg f?ag AUHRSH
Request EI\/1aximqm Initiator Key Responder
Netypton Distribution Y
Key Size Distribution
LSB
Bonding_Flags MITM sC Keypress CT2 RFU

(2 bits) (1 bit) (1 bit) (1 bit)

P comeiutensE E.g.:pairing in LE secure connections

MADRID

Initial public key interchange and generation of the DHKey
shared secret

Initiating Non-initiating
Device A Device B

Public Key Exchange

1a. PKa

Start computing DHKey 1b. PKb Start computing DHKey

DHKey = P256(SKa,PKb) =~ DHKey = P256(SKb,PKa)

Y ecomriumense E.g.: LE secure pairing j. works & numeric

MADRID

Initiating Non-initiating
Device A Device B
Authentication Stage1:
Just Works
2a. Select Random Na 2b. Select Random Nb
3a.Setraandrbto 0 3b. Setrbandrato 0
3c. Compute confirmation:
Cb=f4(PKb, PKa,Nb,0)
F 4.Cb
5. Na >
= 6. Nb
6a. Check if Cb=f4(PKb,PKa,Nb,0)
If check fails, abort
Vaand Vb are 6 digit Numeric: Va & Vb are
numbers to be displayed
on each side, if possible. shown to the user that
7a. Va=g2(PKa,PKb,Na,Nb) 7b. Vb=g2(PKa, PKb,Na,Nb) can confirm them
Proceed if user USER checks if Va = Vb Proceed if user
Confirms “OK” Proceed if each USER confirms ‘OK’ Confirms “OK”

COMPLUTENSE E.g.: LE secure LTK generation

MADRID

Initiating Non-initiating
Device A Device B

Authentication Stage 2:
IOcapA is from Pairing Request LTK Calculation

IOcapB is from Pairing Response
A = Device Address of A used during pairing
B = Device Address of B used during pairing

9. Compute the LTK and MacKey: 9. Compute the LTK and MacKey:
MacKey || LTK =f5(DHKey,Na,Nb,A B) MacKey || LTK = f5(DHKey,Na,Nb,A B)
10a. Compute: Ea = 10b. Compute: Eb =
f6(MacKey,Na.Nb,rb,IOcapA,A B) f6(MacKey,Nb.Na,ra,|OcapB,B ,A)
10. Ea

>

11. Check if Ea =
f6(MacKey,Na,Nb,rb,|0OcapA,A,B)
If check fails, abort.

12. Eb

12a. Check if Eb =
f6(MacKey,Nb,Na,ra,|OcapB,B,A)
If check fails, abort.

Bonding

In phase 1 the bonding flag is checked

e Extra keys are generated for future connections

Identity Resolving Key (IRK): 128 bits for random address
generation and resolution

Connection Signature Resolving Key (CSRK): 128 bits for signature
verification

Long Term Key (LTK): 128 bits to encrypt communications (legacy)
Encrypted Diversifier (EDIV): 16 bits used to identify the LTK
(legacy)

Random Number (Rand): 64 bits used to identify the LTK (legacy).

* |f bonded, the devices can omit the pairing and use the
stored keys

Security Modes

* Required by devices and/or services
e Security Mode 1:

— Level 1 -> security is not required

— Level 2 -> no authentication required, but we want confidentiality

— Level 3 -> authentication and confidentiality are required

— Level 4 -> LE secure connection required, with autenticacion and
confidentiality

e Security Mode 2:
— Level 1 -> unauthenticated with signatures
— Level 2 -> authenticated with signatures

References

* Bluetooth core specification
— https://www.bluetooth.com/specifications/bluetooth-co
re-specification/
* Kevin Townsed, Carles Cufi, Akiba & Robert

Davidson, “Getting Started with Bluetooth Low
Energy”, 2014, O’Reilly.

* Robin Heydon, “Bluetooth Low Energy: The
Developer's Handbook”, 2013, Prentice Hall

e SDK Texas instruments

— http://dev.ti.com/tirex/content/simplelink_cc264
0r2 sdk 1 35 00 33/docs/ble5stack/ble user g
uide/html/ble-stack/index.htm]

https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/index.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/index.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/index.html

