

Networks and Protocols 2

Introduction

Basado en: Internet of Things: Architectures, Protocols and Applications Pallavi Sethi and Smruti R. Sarangi Journal of Electrical and Computer Engineering. Jan. 2017

Definitions

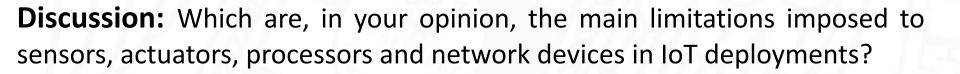
"Interaction between the physical and digital worlds. The digital world interacts with the physical world using a plethora of **sensors** and **actuators**" (Vermesan et al)

"A paradigm in which **computing** and **networking** capabilities are embedded in any kind of conceivable object. We use these capabilities to query the state of the object and to change its state if possible." (Peña-López et al)

"New kind of world where almost all the devices and appliances that we use are connected to a **network.** We can use them collaboratively to achieve complex tasks that require a high degree of intelligence." (Sethi et al)

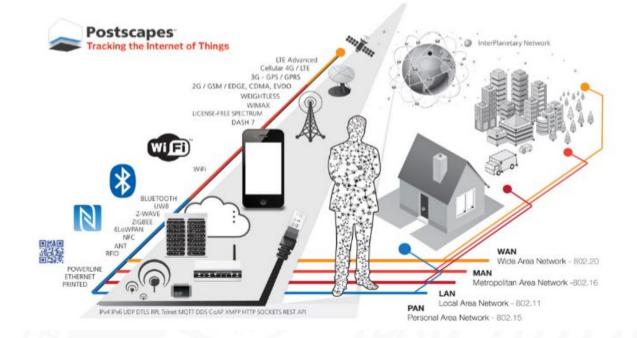
The era of IoT

- New conception of the cyberphysical world in which (almost) all devices are interconnected via networking.
- Possibility of collaborative use to fulfill complex tasks that require large amount of data/processing.



The era of IoT

- IoT is not just one technology:
 - Group of technologies working in a collaborative fashion.
 - IoT devices include sensors, actuators, processors and network devices.



Storing, processing, communicating

- Data storage and processing near sensor (edge computing) or in the server (cloud computing).
- If preprocessing is possible, it can be carried out near sensor.
 Oiscussion: Why?
- Pre-processed data are submitted to a central server.
- Communication across IoT devices is usually wireless
 - Discussion: Why? Which are the implications?

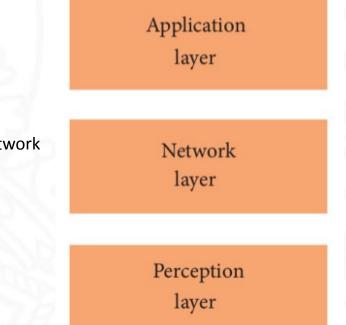
- Wireless channels present more distortion, interferences and lack of robustness.
 - But a reliable and (as much as possible) retransmission-free communication is desirable.
 - Hence, communication technologies play a key role in IoT.

- COMPLUTENSE MADRID
- There is no agreement in what is an IoT architecture.
- Three different architectures are proposed in the literature:
 - Three-layer and five-layer architecture.
 - Fog and cloud architectures.
 - SIoT (Social Internet of Things)

Three-layer IoT architecture

Simple, introduced at the beginning of IoT

• Perception layer:


- Physical layer
- Sensors to gather environmental information
- Gathers physical parameters or identifies close devices

• Network layer:

- Manages connections with other sensor devices, network devices or servers
- Transmission and data processing from sensors

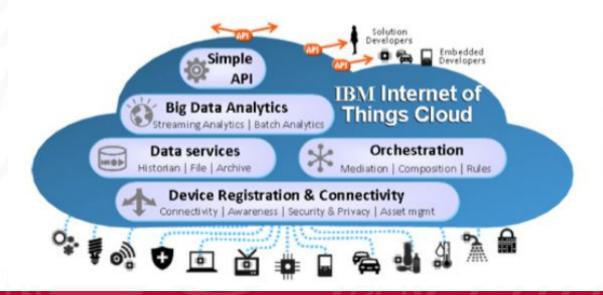
Application layer:

• Offers services to users, specific for an application

Five-layer IoT architecture

Extended architecture with two additional layers

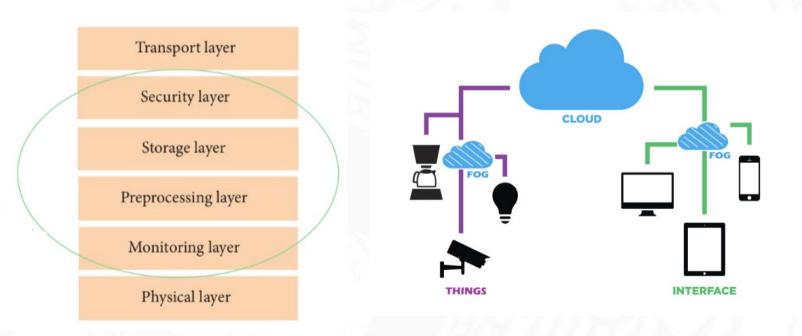
Business layer **Transport layer:** Transfers sensor data from perception layer to processing layer, and vice-versa: Application layer Via WiFi, 3G, 4G, 5G, LAN, BLE, RFID, NFC... Specific communication protocols are defined at this level Processing layer Processing layer (middleware): Stores, analyzes and processes data from transport layer Provides services to lower layers: Transport layer Decision taking, interoperability across services and platforms, Perception layer **Business layer:** Manages the overall IoT system, including applications, data models, business model and privacy



Cloud and fog architectures

• Centered on processing/generation of data more than in protocols

• Cloud-centric

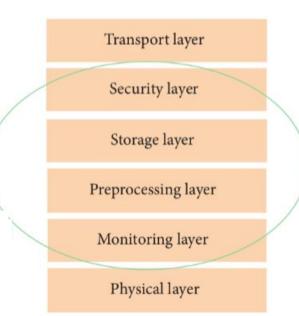

- Processing is carried out in large centralized infrastructures (*cloud computing*)
 - Pros: flexibility and scalability
 - Provides basic services: infrastructure, software and storage

Cloud and fog architectures

- Fog computing
 - Sensors and gateways (network devices) collaborate in processing and data analysis
 - Inserts monitorization, pre-processing, storage and security between physical and transport layer

Cloud and fog architectures

Monitorization layer


• Monitors energy consumption, resources and services

Pre-processing layer

- Filtering, processing and analysis
- Temporary storage layer
- Replication, distribution and data storage

Security layer

• Encryption, integrity and privacy

Monitoring and pre-procesing are carried out at the edge, before sending data to the cloud

Communication challenges

1. Addressing and identification

• Unique addressing. Billions of devices

2. Low-power communication

• Wireless communication: high power consumption

3. Routing protocols

• Low memory and processing requirements

4. Speed and data losses

• Adapted to application/environment

5. Mobility

• Dynamic routing protocols

Communication challenges

Options:

1. Connecting via IP

- Complex, energy-hungry
- Complete in functionality

2. Connecting via no-IP networking

- Less energy consumption
- Connection via gateway
- Bluetooth, RFID, NFC
- Limited range (meters)
- Limited to PAN
- Additional support for LPWAN (e.g. LoRaWAN)

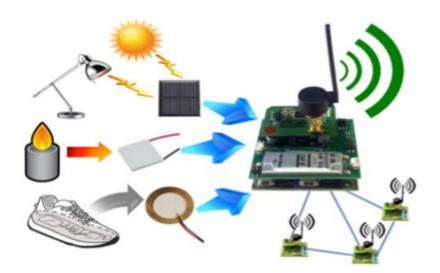
3. The best of both worlds

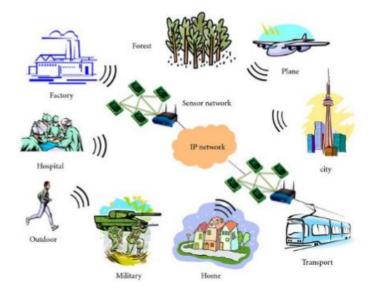
- Modifying the IP stack to achieve low power and full IP functionality
- Example: 6LowPAN

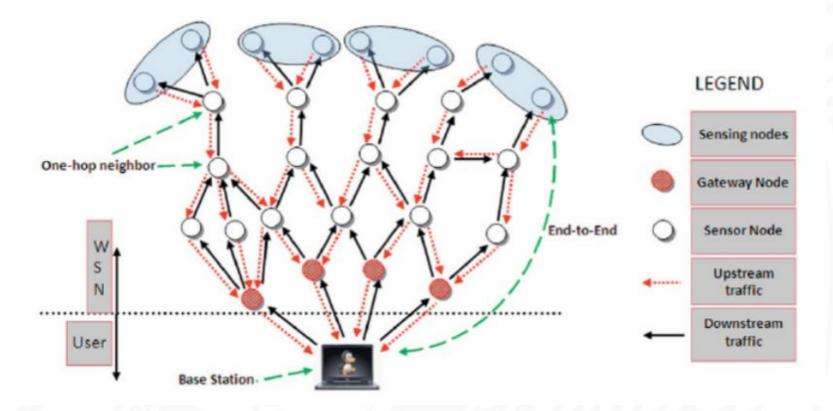
Example no-IP: NFC

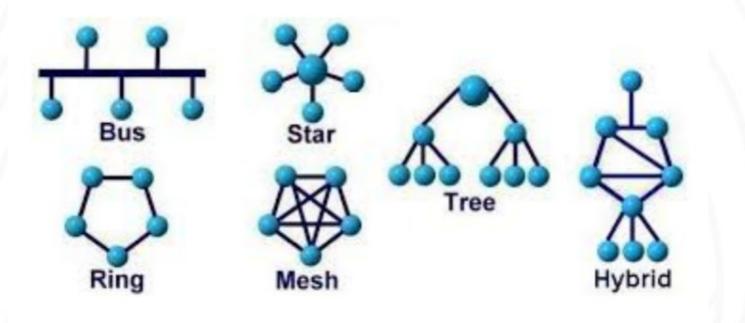
UNIVERSIDAD COMPLUTENSE MADRID

NFC (Near Field Communication)


- Communication technology for ultra-low range scenarios
- Compatible devices can interact at short distances
 - Centimeters (security)
- Based on RFID
 - Uses magnetic field variations to communicate data
 - Operates at 13.56 Mhz, same as RFID. 100-450 kbps
 - Active and passive mode
 - Bidirectional communications
- Discussion: ¿Advantages? ¿Target applications?

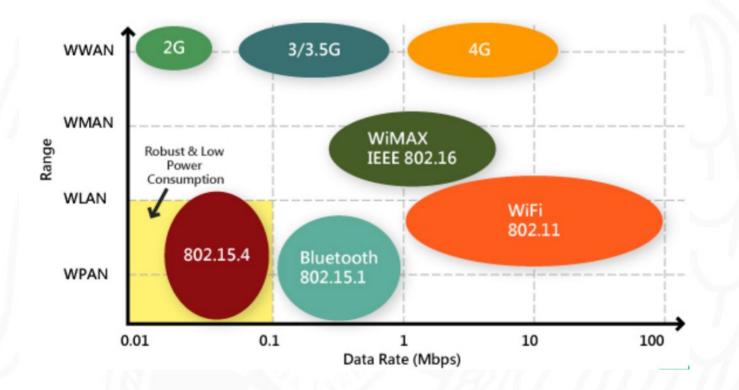



- WSN: thousands of sensor nodes connected via wireless
- Gather environmental data and communicate to gateway devices, that resend data to Internet (e.g. cloud)

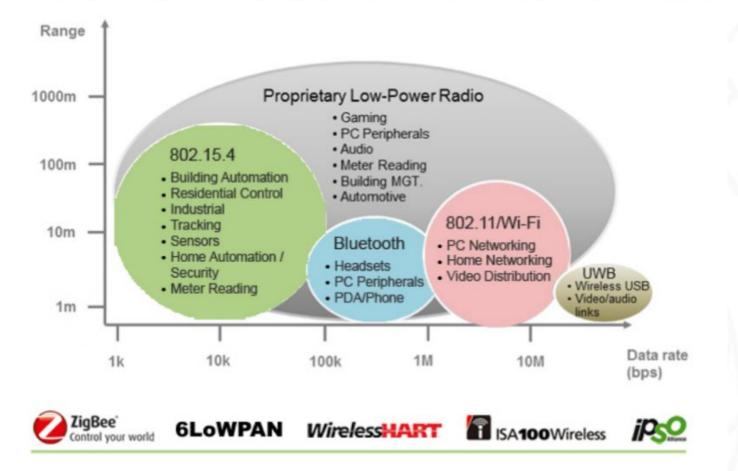

- Inter-node communication: direct or multi-hop
- Sensor nodes with limited capabilities
- Gateways with extended and adaptable capabilities

Example: WSN (Wireless Sensor Networks)

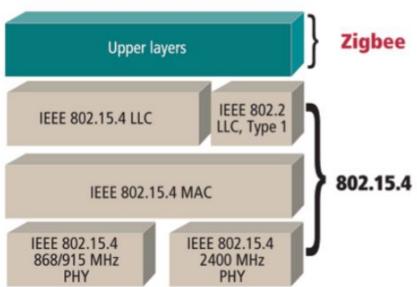
• Typical topologies



- IETF (Internet Engineering Task Force) has developed alternative protocols specifically designed for IoT
 - Using IP
 - IPSO (Internet Protocol for Smart Objects) Alliance has published standards and alternative protocols for each layer of the TCP/IP stack

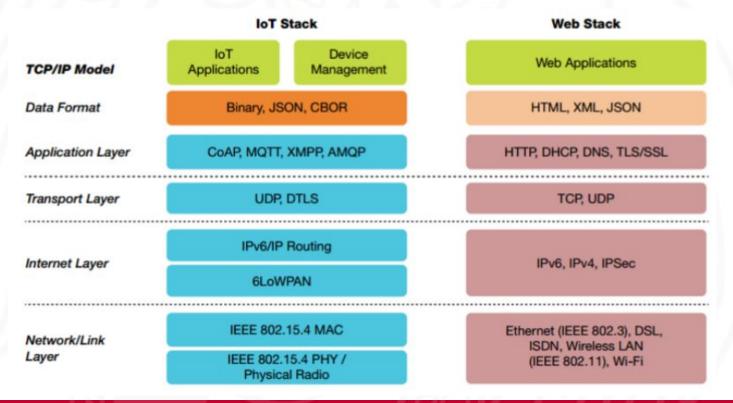


- Designed to facilitate communication across IoT devices
 - Standards and protocols for physical and link (MAC) layers
 - Targeting compact, memory and energy-restricted devices
 - Short-range, low cost and low-power communication


Physical and MAC layer (IEEE 802.15.4)

802.15.4 architecture

- Low power -> less range
- Sub-Ghz vs. Super-Ghz
 - Discussion: ¿Pros and cons?



- Due to small range, devices need to co-operate and create a multi-hop architecture to cover large distances.
- Implemented techniques:
 - Packet size reduction (127 bytes). ¿Valid for IoT?
 - Transfer rate reduction (250 Kbps). ¿Valid for IoT?
 - Redundant codes, robust, loss detection, package retransmission... why?
 - Link-layer addresses of 16 bit to reduce overhead

- IPv6 is an ideal protocol given its stability, addressing space and scalability
- Needs adaptation to work with IEEE 802.15.4: 6LoWPAN
- 6LowPAN: IPv6 over low power wireless personal area networks
 - Adaptation between link-layer 802.15.4 and transport layer
 - Compression techniques and adaptation to link-layer

Optimization techniques for IoT:

- 1. Header compression
 - a. Overhead reduction

2. Fragmentation

a. Link-layer routing

3. Using local MAC addresses

a. Communication within the same network

RPL: Routing Protocol for Low Power and Lossy Networks (LLN)

- Open protocol
- Based on distance-vector (any other example?)
- Directed graph construction (DODAGs)
 - Objective functions in *DODAGs*: energy, hops, distance,
- Support in many IoT Operating Systems (e.g. Contiki)

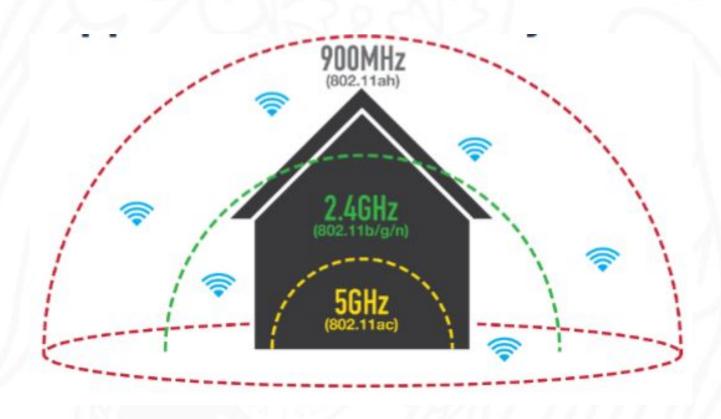
Transport layer: UDP and TCP

- ¿TCP or UDP? ¿why?
- This discussion will be nuclear part of the next sessions

- Two main actors: **CoAP** and **MQTT**
- **CoAP** (Constrained Application Protocol)
 - "Based" on HTTP. ¿Why not HTTP?
 - Specific binary encoding formats: EXI, CBOR
 - Resource discovering, suscription, congestion control, multicasting
 - Confirmable messages, ACKs, RESET, ...
 - DTLS support
- **MQTT** (*Message Queue Telemetry Transport*)
 - Publication/suscription based on TCP (UDP)
 - Broker-based
 - Hierarchical topics to publish/subscribe
 - Verbose (uses text)
 - Uses TCP by design. Not always availabl (e.g. NB-IoT)

BLE: Bluetooth Low Energy (Bluetooth Smart)

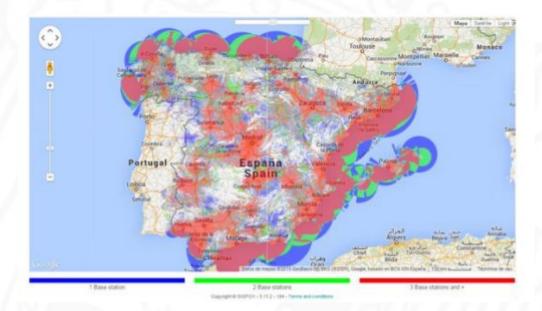
- Short range, low power
- Not compatible with Bluetooth classic, but share philosophy
- Does not support data streaming: sending individual packages
- Master/slave architecture (1-n)



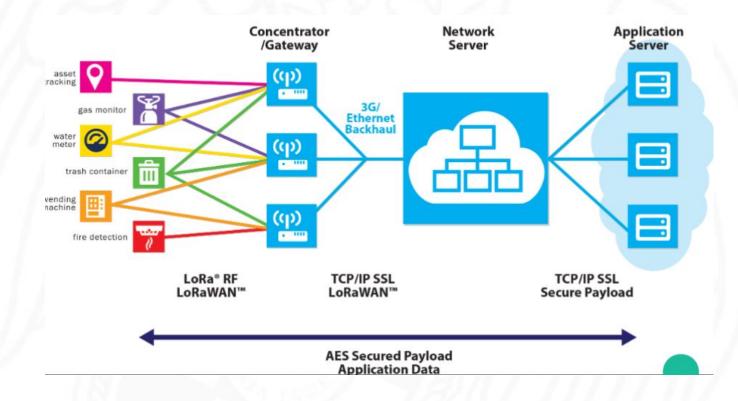
	Generic Access Profile (GAP)	Generic Attribute Profile (GATT)		
	Security Manager (SM)	Attribute Protocol (ATT)		
	Logical Link Control and Adaptation Protocol (L2CAP)			
ontrolle	Host-Controller Interfa	ace (HCI)		
	Link Layer (LL			
	Physical Layer (F	<u>.</u>		

Low Power WiFi (WiFi HaLow)

- Standard 802.11ah, low power, long range
 - IP support, star topology, sub-GHz (pros/cons?)


LPWAN: Low Power Wide-Area-Networks

- Narrow band IoT
 - Devices restricted in energy consumption
 - Necessity of reducing bitrate
 - Examples (unlicensed spectrum): Sigfox, LoRA
 - Examples (licensed spectrum): NB-IoT


- Sigfox
 - Sub-ghz communication, narrow band (10Mhz)
 - Uses unassigned phone company ranges for transmission
 - Limited to messages of 12 bytes, 140 messages per day
 - Energy lower than mobile telephony (<0.1%)

LPWAN. LoRaWAN

- LoRaWAN
 - Similar to Sigfox
 - Wide area, low poser
 - Between 0.3 and 50 Kbps, kilometers of range

Perspective

35% SOM

- Well established standards
- ✓ Good for:
 - Mobile devices
 - In-home
 - Short range
- Not good:
 - Battery life
 - Long range

LPWAN ?? Long Range w/ Battery Internet of Objects

55% SOM

- Emerging PHY solutions
- ✓ Good for:
 - Long range
 - Long battery
 - Low cost
 - Positioning
- Not good:
 - High data-rate

Cellular 📝

Long Range w/Power Traditional M2M

10% SOM

- Well established standards
- ✓ Good for:
 - Long range
 - High data-rate
 - Coverage
- Not good:
 - Battery life
 - Cost

Summary

COMPLUTENSE Madrid

IoT: Specific technologies targeting specific challenges inherent to IoT

- Low power
- Mobility
- Security
- Latency
- Addressing

Different cases according to specific scenario

- PAN
- MAN
- WAN

Edge computing as a trend

• Latency, security, computation capabilities, mobility

Specific SW/HW support for each technology

 Individual task: survey of HW/SW capabilities with support for technologies studied during the session. Individual, presenting next session

HW platform	Network technology	Software / API	Sensors	Cost
		Best	3	2 Ye
177				
[[]]]]	1 ASF		ask.	