UNIVERSIDAD

COMPLUTENSE

MADRID

Firmware Updates (OTA)
NP-2

Based on “Software update for IoT” from Chris Simmonds (2net)

Why is it necessary?

* Problem 1
— Software is far from trivial: it has bugs!!

— Connected devices: vulnerabilities
* Bugs are not isolated, they can be remotely exploited

e Problem 2

— Necessity of incorporating new functions,
improving performance, reducing energy...

 Conclusion
— Remote updates are necessary

() CoMPLUTERSE Vulnerabilities

* Mirai botnet
— DDoS attack - 600Gbps (2016)
— Target: IP Cameras Duhua IP
— Very easy:
* Scanning telnet port

e Brute force attack

— (62 possible user-pass)

COMPLUTENSE Vulnerabilities

MADRID

 Mirai botnet

C&C strver Leader Repor! server Bat New bot wiclim Tanme server

e e @

I, Brute force

v

2 Rapert
3. Check status &
4. Inkct command 5 Malkkus
binary

v

6. Altack command

Y

7. Atlack

Reaction speed is key

MADRID

 Companies usually act too late

I}
o
R

~
v
®

110 days: remediation time avg.

50% -

7 60 days: >90% probability it is exploited

25%

Cumulative Probability of Exploit (if exploited in first year)

<\ 5-10 days: <10% probability it is exploited

(o]
R

6 100 bays 200 Days
Days Beyond Publish Date

Source: How the Rise in Non-Targeted Attacks Has Widened the Remediation Gap, Kenna Security

Examples

e 2014: Tesla was one of the first considering

OTA TESLA’S OVER-THE-AIR FIX: BEST EXAMPLE YET
OF THE INTERNET OF THINGS?

Image: jurvetson/Flickr

The National Highway Traffic Safety Administration recently
published two recall announcements, one from Tesla Motors and
one from GM. Both are related to problems that could cause fires.
Tesla’s fix can be conducted as an “over the air” software update and
doesn’t require owners to bring their cars to the dealer. For that
reason, we have a new precedent for what constitutes an automotive

recall.

/é‘;(\\:ﬂ UNIVERSIDAD
\

\

V) COMPLUTENSE Examp les

MADRID

e Jeep vs Tesla (2015)

= MIBEE BACKCHANNEL BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY SIGN IN Q = mIEEm BACKCHANNEL BUSINESS CULTURE EEAR .INEAS MORE. v

Hackers Remotely Kill a Jeep on the Highwa
—With Mein It e e 'INWAY Researchers Hacked a Model S, But

1
| was driving 70 mph on the edge of downtown St. Louis when the exploit began to take hold. TeSIa s Already Released a PatCh

Two hackers figure out how to attack a Tesla Model S, yet also call it "the most
secure car that we've seen."

f

SIGN IN Q

Hackers Remotely Kill a Jeep on the Highway—With Me in It
1 BEERE

You don't think so?

» 458507

Examples

= MIEEE BACKCHANNEL BUSINESS CULTURE GEAR IDEAS MORE v SIGN IN Q

SECURITY 11.23.20828 B87:88 AM

This Bluetooth Attack Can Steal a Tesla
Model X in Minutes

The company is rolling out a patch for the vulnerabilities, which allowed one
researcher to break into a car in 90 seconds and drive away.

COSIC - Computer Security and Industrial Cryptography

1.4K subscribers

Open Trunk: 6d1290edc24d2ba49edd51001fbd566f
Lock all: 0a442a25759aabd38590d57d37b60312

MORE VIDEOS
y ck the target car...
Unlocking doors

COSIC post) 121223

https://www.esat.kuleuven.be/cosic/news/belgian-security-researchers-from-cosic-and-imec-steal-a-tesla-model-x-in-minutes/

Importance of updating

* Design requisite of first order

— Necessary to consider it from the beginning of the
loT solution development

* They can be an attack vector
— Ej. Zigbee Worm

* Necessity of standardized mechanisms and
tools

— Avoid ad-hoc solutions

The Thing Lifecycle

* |oT Security: State of the Art and Challenges
— RFC-8576

£ Manufactured

/Installed ’ Software update Decommissioned
Commissioned % Reconfigured E Removed & replaced

@ Reownership &

@ recommissioned

H_l\ Y IH_I\ Y J \ Y J

| }Application Running | ’Application Running

Bootstrapping Operational ~ Maintenance & Operational Maintenance &
re-bootstrapping re-bootstrapping

https://tools.ietf.org/html/rfc8576

Requisites of update process

* OTA must guarantee:

— Security: to avoid being an attack vector (device
kidnapping)

— Robustness: avoid device malfunction (permanent)

— Atomicity: avoid partial updates

— Fault tolerance (fail-safe): returning to a safe status
in case of error

— Energetic efficiency (and also memory and
computation):
* Specially important in “constrained devices” (CD)

Update process

* Questions to solve:
— How to distribute the SW update?
— How to validate authenticity?
— How to apply it on a device?
— How to verify it is valid?

* Involved elements
— SW design on the device

— Backend framework (server)
— Transport network (TCP/UDP, SSL, ...)

Update process

* 4-phase model:
— Packing and signature
— Delivery
— Authentication
— Remote attestation

Resource dependency

* The update process depends on the available
resources

— Embedded Linux (EL): memory, storage, computing
(crypto) capabilities allow for complex mechanisms

— Constrained Devices (CD): few KiB RAM/Flash, few
compute capabilities, simple crypto
* RFC-7228 “Constrained Devices”

g@;ﬁ%UNIVERSIDAD
fork
E2\/

":{) COMPLUTENSE

OTA - Embedded Linux

EL - Firmware Update

e Server update != device update

e Server

— Safe environment, no failures on network or
electricity supply

— If the update fails, a human can intervene
* Device

— Power supply and network can be unstable,
interrupting the update.

— A failure within the process is difficult to correct

* Update via packages (rpm/deb) is not atomic

) COMPLUTENSE What to update?

* Frequency, simplicity vs. importance

System applications
Root file system

Bootloader

Ease of update

Frequency

Granularity

* File:

— Not an option: difficult to guarantee atomicity
* Package (e.g. RPM, deb):

— apt-get can be enough in servers, not in devices
* Image of filesystem:

— Common option: easy to implement and verify
* “Atomic differential update”

— Uses FS tricks to update in an atomic fashion groups of
files

e Container

— Good idea...provided devices could run containers in a
generalized manner

Main problems

* Authentication
— |s the update legitimate?
* Security/integrity
— Did the device receive what we sent to it?

* Roll-back

— Upon an update failure, it must be possible to roll
back to the previous version

* Monitoring

— Monitor of the updates processes and versions on
all devices in the deployment

Roll-back

e Limit in the boot counter
— Feature of the bootloader (e.g. U-Boot)
— Incremented upon bootloader init
— Removed if success

— If counter > 0, the bootloader knows there is a
failed intent and loads an alternative image

 Watchdog hardware

— |f the boot is not successful, a timeout can occur
and CPU is reinit

— The bootloader checks the reason

* If the reason is a watchdog, loads an alternative image

Update agent

* Device code that manages the update process

* Tasks:
— Receive the update from a server
— Apply the update
— Replace flag at bootloader

— Requests for reboot

Q

) S Image update

MADRID

e Two alternatives:

[OS Copy 1]
Symmetric A/B (Android after /F' soot
Nougat)

..‘ .

0S Copy 2

Main OS

Asymmetric normal/recovery /F' Boot
(Android before Nougat) . flag data

Image update

* Examples (update init by client)
— swupdate
* Update client for symmetric/asymmetric image update
* Remote streaming via curl (http/https/ssh/ftp)

e REST client for hawkBit
e Bootloader: U-boot

— RAUC (Robust Auto-Update Controller)
» Update client for symmetric/asymmetric image update
* Bootloader: grub, barebox
* Remote streaming via curl (http/https/ssh/ftp)
* REST client for hawkBit
* Supports x.509

http://sbabic.github.io/swupdate/index.html
https://rauc.readthedocs.org/

) Conirib RS Image update

* Examples (update init by server)

— Mender
 Server and client for symmetric update

* Bootloader: U-boot

https://mender.io/

Atomic differential update

e OSTree

— Stores data in a repository similar to git
— Filesystem linked with this repo
— Atomic checkout

— Pros:
* Less storage, transfer time

— Cons:

* No backup system in case of corruption

69 COMPLUTERGE Container-based updates

* Examples:

— Resin.io
 Based on Docker containers

* Integrated with a backend proprietary server

— Snappy

* Based on snap containers

https://resin.io/

,{(\\';,\ UNIVERSIDAD

¥:3) COMPLUTENSE

OTA - Constrained Devices

Constrained Devices

* Usually image-update

* Minimalist bootloader + flash slots
— Problems on small flash

Bootloader Slot 0 Slot 1 Scratch

— Examples: ESPER, MCUboot, RIOTboot

https://juullabs-oss.github.io/mcuboot/

i) COMPLUTERSE Backend Frameworks

* Necessary end-to-end validation
* Use of metadata

* Firmware manifest:
— SW autorship (signature)
— SW integrity (hash)
— SW version

Firmware Image
+ Manifest

End-to-end
Secunty

— Cypher/protection
— Even package localization firmware Image

+ Manifest

#-3) COMPLUTERSE Backend Frameworks - Open

* hawkBit

 TUF/Uptane

* Mcumngr (download manager)
e [WM2M

* Newest:
— ASSURED
— CHAINIAC
— UpKit

~9§§EUNIVERSIDAD
“;,?'/‘

¢:%) COMPLUTENSE

A MADRID

loT Business Solutions
Management Ul Management API

Eclipse hawkBit — Update Server

Device and Software Artifact Content Software Update and
Repository Delivery Roll out Management

Direct Device Integration API Device Management Federation API

Device Management Services

 Device Management Services |
06 60 0O 600

https://www.eclipse.org/hawkbit/

) COMPLUTENSE TUF/Uptane

MADRID

* The Update Framework (TUF) /Uptane

/ TUF Repository\ e ~N / Uptane Director\
@) / © Fetch image metadata TU F C| ient € Report version manifest
== Gl o] | (pri I °
e Primary ECU VIN+ =]
- i (v ECU) 5
= L/ , =" | = Inventory
m et | @) / @ Fetch software artifacts @/ @ verifyall metaqata @ sign and send director ditabuse
0\ " R and software artifacts 3 metadata =
K \‘ J ' 17 Software artifacts K
a

@ Broadcast to all ECUs

[torgess |
-
! [root |
Secondary ECU Secondary ECU Secondary ECU
¥ ECU Key ¥ ecukey ECU Key

Metadata ‘ill Software Artifact Cryptographic Key Version Manifest

https://theupdateframework.github.io/
https://uptane.github.io/

Backends frameworks - Proprietary

* Almost all frameworks offer OTA
— Amazon AWS
— Microsoft Azure
— Google Cloud loT

e Usually based on MQTT and proprietary
libraries (=X

* Amazon FreeRTOS OTA Agent

User Applications

OTA Agent MQTT Client

Secure Crypto Utilities Secure Wi-Fi FreeRTOS

i Stack
Filesystem Wi-Fi Kernel

Images Manage Keys TLS Manager

Keys Accelerators, RNG TCP/IP

Device Drivers
Secure Bootloader (ROM’d)

IETF SUIT

e |[ETF Software Updates for Internet of Things

e 3 drafts
— FU Architecture for loT
— Information mode for FU loT Devices

— CBOR based Serialization Format for the SUIT
Manifest

https://datatracker.ietf.org/doc/draft-ietf-suit-architecture/
https://datatracker.ietf.org/doc/draft-ietf-suit-information-model/
https://datatracker.ietf.org/doc/draft-ietf-suit-manifest/
https://datatracker.ietf.org/doc/draft-ietf-suit-manifest/

