
Firmware Updates (OTA)
NP-2

Based on “Software update for IoT” from Chris Simmonds (2net)

Why is it necessary?

• Problem 1
– Software is far from trivial: it has bugs!!

– Connected devices: vulnerabilities
• Bugs are not isolated, they can be remotely exploited

• Problem 2
– Necessity of incorporating new functions,

improving performance, reducing energy…
• Conclusion
– Remote updates are necessary

Vulnerabilities

• Mirai botnet
– DDoS attack - 600Gbps (2016)

– Target: IP Cameras Duhua IP

– Very easy:
• Scanning telnet port

• Brute force attack

– (62 possible user-pass)

Vulnerabilities

• Mirai botnet

Reaction speed is key

• Companies usually act too late

Examples

• 2014: Tesla was one of the first considering
OTA

Examples

• Jeep vs Tesla (2015)

Examples

• But OTA can also be dangerous (2020)

COSIC post

https://www.esat.kuleuven.be/cosic/news/belgian-security-researchers-from-cosic-and-imec-steal-a-tesla-model-x-in-minutes/

Importance of updating

• Design requisite of first order
– Necessary to consider it from the beginning of the

IoT solution development

• They can be an attack vector
– Ej. Zigbee Worm

• Necessity of standardized mechanisms and
tools
– Avoid ad-hoc solutions

The Thing Lifecycle

• IoT Security: State of the Art and Challenges
– RFC-8576

https://tools.ietf.org/html/rfc8576

Requisites of update process

• OTA must guarantee:
– Security: to avoid being an attack vector (device

kidnapping)

– Robustness: avoid device malfunction (permanent)

– Atomicity: avoid partial updates

– Fault tolerance (fail-safe): returning to a safe status
in case of error

– Energetic efficiency (and also memory and
computation):
• Specially important in “constrained devices” (CD)

Update process

• Questions to solve:
– How to distribute the SW update?
– How to validate authenticity?
– How to apply it on a device?
– How to verify it is valid?

• Involved elements
– SW design on the device
– Backend framework (server)
– Transport network (TCP/UDP, SSL, …)

Update process

• 4-phase model:
– Packing and signature

– Delivery

– Authentication

– Remote attestation

Resource dependency

• The update process depends on the available
resources
– Embedded Linux (EL): memory, storage, computing

(crypto) capabilities allow for complex mechanisms

– Constrained Devices (CD): few KiB RAM/Flash, few
compute capabilities, simple crypto
• RFC-7228 “Constrained Devices”

OTA - Embedded Linux

EL - Firmware Update

• Server update != device update

• Server
– Safe environment, no failures on network or

electricity supply

– If the update fails, a human can intervene

• Device
– Power supply and network can be unstable,

interrupting the update.

– A failure within the process is difficult to correct

• Update via packages (rpm/deb) is not atomic

What to update?

• Frequency, simplicity vs. importance

Granularity

• File:
– Not an option: difficult to guarantee atomicity

• Package (e.g. RPM, deb):
– apt-get can be enough in servers, not in devices

• Image of filesystem:
– Common option: easy to implement and verify

• “Atomic differential update”
– Uses FS tricks to update in an atomic fashion groups of

files
• Container
– Good idea…provided devices could run containers in a

generalized manner

Main problems

• Authentication
– Is the update legitimate?

• Security/integrity
– Did the device receive what we sent to it?

• Roll-back
– Upon an update failure, it must be possible to roll

back to the previous version

• Monitoring
– Monitor of the updates processes and versions on

all devices in the deployment

Roll-back

• Limit in the boot counter
– Feature of the bootloader (e.g. U-Boot)
– Incremented upon bootloader init
– Removed if success
– If counter > 0, the bootloader knows there is a

failed intent and loads an alternative image

• Watchdog hardware
– If the boot is not successful, a timeout can occur

and CPU is reinit
– The bootloader checks the reason

• If the reason is a watchdog, loads an alternative image

Update agent

• Device code that manages the update process

• Tasks:
– Receive the update from a server

– Apply the update

– Replace flag at bootloader

– Requests for reboot

Image update

• Two alternatives:

Image update

• Examples (update init by client)
– swupdate

• Update client for symmetric/asymmetric image update
• Remote streaming via curl (http/https/ssh/ftp)
• REST client for hawkBit
• Bootloader: U-boot

– RAUC (Robust Auto-Update Controller)
• Update client for symmetric/asymmetric image update
• Bootloader: grub, barebox
• Remote streaming via curl (http/https/ssh/ftp)
• REST client for hawkBit
• Supports x.509

http://sbabic.github.io/swupdate/index.html
https://rauc.readthedocs.org/

Image update

• Examples (update init by server)
– Mender

• Server and client for symmetric update

• Bootloader: U-boot

https://mender.io/

Atomic differential update

• OSTree
– Stores data in a repository similar to git

– Filesystem linked with this repo

– Atomic checkout

– Pros:
• Less storage, transfer time

– Cons:
• No backup system in case of corruption

Container-based updates

• Examples:
– Resin.io

• Based on Docker containers

• Integrated with a backend proprietary server

– Snappy
• Based on snap containers

https://resin.io/

OTA - Constrained Devices

Constrained Devices

• Usually image-update

• Minimalist bootloader + flash slots
– Problems on small flash

– Examples: ESPER, MCUboot, RIOTboot

https://juullabs-oss.github.io/mcuboot/

Backend Frameworks

• Necessary end-to-end validation

• Use of metadata

• Firmware manifest:
– SW autorship (signature)

– SW integrity (hash)

– SW version

– Cypher/protection

– Even package localization

Backend Frameworks - Open

• hawkBit

• TUF/Uptane

• Mcumngr (download manager)

• LWM2M

• Newest:
– ASSURED

– CHAINIAC

– UpKit

• Eclipse hawkBit

https://www.eclipse.org/hawkbit/

TUF/Uptane

• The Update Framework (TUF) /Uptane

https://theupdateframework.github.io/
https://uptane.github.io/

Backends frameworks - Proprietary

• Almost all frameworks offer OTA
– Amazon AWS

– Microsoft Azure

– Google Cloud IoT

– …
• Usually based on MQTT and proprietary

libraries ☹

• Amazon FreeRTOS OTA Agent

Device Drivers

FreeRTOS
Kernel

User Applications

Secure Wi-Fi
Stack

TLS

TCP/IP

Secure Bootloader (ROM’d)

MQTT ClientOTA Agent

Crypto Utilities

Manage Keys

Accelerators, RNG

Secure
Filesystem

Images

Keys

Wi-Fi
Manager

IETF SUIT

• IETF Software Updates for Internet of Things

• 3 drafts
– FU Architecture for IoT

– Information mode for FU IoT Devices

– CBOR based Serialization Format for the SUIT
Manifest

https://datatracker.ietf.org/doc/draft-ietf-suit-architecture/
https://datatracker.ietf.org/doc/draft-ietf-suit-information-model/
https://datatracker.ietf.org/doc/draft-ietf-suit-manifest/
https://datatracker.ietf.org/doc/draft-ietf-suit-manifest/

