
NP2
Information Representation

Facultad de Informática

Data serialization

Data Serialization

• Data Serialization: converting organized objects in complex data
structures for storage or transfer.

• This storage must be neutral w.r.t. the language and platform to
attain interoperability.

• Data Deserialization: Inverse process.

DS: Concerns

• For simple data, the process is easy.

• Problem: complex data, with references or multi-level nesting (e.g.
trees).

• In case of references, double serialization for the same object must
be avoided.

• The result of serialization is a byte flow that can be binary or
text-based.

• For text, the encoding scheme of characters uses a standard format:

– ISO-8859-1 (1-byte, latin alphabet characters, West Europe)

– UTF-8 (Variable length, unicode characters, multilanguage)

DS: Example

• Serialization/Deserialization using XML

source: https://www.cisecurity.org/blog/data-deserialization/

DS: format selection

• The selection of a serialization format depends on
factors such as:

– Complexity

– Usability (legibility)

– Processing speed

– Required storage space

– Extensibility, compatibility

• Popular formats: XML, JSON, BSON, YAML,
MessagePack, protobuf, CBOR, ...

DS: formats based on text

• CSV (Comma-Separated Values) - Table structure with
delimiters. Easy to read. Can be opened on a spreadsheet.

• XML (Extensible Markup Language) - Nested format. Easy to
read. Based on a validation schema. Used for metadata,
webservices, …

• JSON (JavaScript Object Notation) - Compact format with
nested data. Easy to read. Popular in webservices, usually via
REST interfaces.

• YAML (YAML Ain't Markup Language) - Light format. Easy to
read. Superset of JSON. Supports complex data. Usually
employed in configuration files, document headers, …

DS: binary formats

• BSON (Binary JSON) - Created and used internally by MongoDB.
Not easy to read. Similar to JSON. Includes more data types
(dates, binaries, …). Used for video and multi-media documents,
not usually in communications.

• MessagePack - Designed to be converted to/from JSON. Not easy
to read. Provides better compatibility with JSON than BSON. Used
for distributed applications.

• protobuf (Protocol Buffers) - Created by Google. Not easy to
read. Allows using a schema for data. Provides data compression.
Used in distributed applications.

• CBOR - Inspired by JSON. Not easy to read. Compact, easy to
process and extensible. Supports multiple data types. Used in
CoAP and COSE messages (CBOR Object Signing and
Encryption, RFC-8152)

https://tools.ietf.org/html/rfc8152

XML

https://www.ibm.com/developerworks/xml/tutorials/xmlintro/xmlintro.html

https://www.ibm.com/developerworks/xml/tutorials/xmlintro/xmlintro.html

XML

• What is XML? XML = eXtensible Markup Language

– Metalanguage that allows defining tag languages (that is,
define own tags).

– Origins: SGML (Standard Generalized Markup Language).
– Developed by W3C (World Wide Web Consortium) to

overcome limitations of HTML.
• Pros

– Can be read.
– Easy to use.
– Versatile.
– Portable.

XML: limitations of HTML

• XML aims at solving the problem of expressing information in
a structured manner in an abstract and reusable fashion.

• HTML uses fixed marks that indicate how to visualize
information (person oriented, not machine-oriented).

XML: limitations of HTML

• Example HTML

• Example XML

XML: marks, elements and attributes

• Mark (tag): text between symbols < and >

– Marks appear in pairs (start-end)

• Element: content bound by start and end marks.

– Elements cannot overlap.

– Only one root element..

• Attribute: name-value pair inside the mark of an element (e.g.
state="NC")

– Example:

XML: declarations, comments

• A declaration provides basic information about the document.

– Not required, only recommmended.

– Example:

• A comment can include any text but --

– Example:

XML: document types

• Invalid:
– Do not respect the syntax specifications of XML
– Do not follow definition rules for contents (DTD or

schema).
• Valids:

– Respect specifications and rules
• Well-formed:

– Respect specifications, rules and have a schema.

XML: content definitions

• Two ways to define contents:
– Document Type Definition (DTD) - Defines which

elements can appear in an XML document, the order in
which they can appear, and other details of the
document structure. Different syntax from XML.

– XML Schema - Defines the same things than a DTD,
but can also define datatypes and complex rules. ore
expressive power.

XML: DTD

• Example:

XML: Schemas

• Example

EXI

Problems with XML

• Too verbose (designed for be readable)

• Example: 49 bytes of overhead to transmit a numerical field as
text!!

What is EXI?

• Binary version of XML developed by W3C (2014)
• Reduces verbosity and parsing cost.

– More compact
– Less traffic
– Less computational overhead

• Not a compression method, but an alternative encoding
• Suitable for small devices

– (-) battery (-) memory (-) computation

EXI: Stream

• EXI Stream - Representation of an XML document via EXI

EXI: structutre of a stream

EXI: events

EXI: body stream

EXI: example

JSON

What is JSON?

● JSON = JavaScript Object Notation
● Data serialization format based on text
● Uses object syntax of JavaScript
● Pros:

○ Readable
○ More compact and easier than XML

■ In Javascript, it would suffice to use eval()
○ Language independent
○ Widely expanded and used

JSON: description and types

● Essentially, a JSON document is composed by collections of key:value
pairs, with the key being a string

● Datatypes:
○ strings: string between “
○ numbers: similar to majority of programming languages
○ booleans: true/false
○ objects: collection with no order of pairs key:value, separated by ,

and delimited by { }
○ list: ordered collection of values separated by , and delimited by []
○ null value: null

JSON: example

Limitations of JSON

● No support for binary data
● Decimal numbers, necessary analysis
● Format requires:

○ Escape strings
○ Use base64 for binary data

● Not extensible (e.g. dates?)
● Interoperability problems

BSON

What is BSON?

● BSON: Binary JSON
● Binary representation format with origins in MongoDB
● Pros:

○ Light
○ Compact
○ Additional data types over JSON (e.g. datetime, binary data)

BSON: format and types

Format:
● length: document length

○ e_list: binary elements representation (pairs key-value) for each one,
fomed by:

○ 1 byte code (value type)
○ key: character string ended by \0
○ binary value

● Basic datatypes: byte, int32, int64, uint64, double, decimal128 (little-endian)
● zero teminator:

BSON: codes and types

http://bsonspec.org/spec.html

http://bsonspec.org/spec.html

BSON: example

CBOR

What is CBOR?

● CBOR = Concise Binary Object Representation
● Binary format for data serialization inspired by JSON
● Pros:

○ Compact
○ Easy to process (small code footprint)
○ Extensible

CBOR: format and types

● Main type (major type, MT):
○ integers with (0) or without (1) sign
○ char strings encoded as bytes (2) or UTF-8 (3)
○ arrays (4), maps (5) (objects)
○ tagging (6)
○ simple types (7) - floating point, booleans

● Additional information (AI): immediate value or length
information

CBOR: AI

● 5 bits
○ 0…23: immediate value
○ 24…27: followed by a value with 1, 2, 4 or 8 bytes
○ 28…30: reserved
○ 31: undefined length

■ Ended by 0xFF instead of a data item

● Can generate:
○ value for MT = 0, 1, (integers), 7 (simple data)
○ Length (in bytes) for MT = 2, 3
○ Count (in items) for MT = 4, 5 (arrays, maps)
○ Tag for MT=6

CBOR: MT 6 y 7

● MT=7
○ AI = 0…24

■ False, true, null, undef
■ See IANA register for more information

○ AI=25,26,27: IEEE floats, half, single, double precision
● MT=6

○ Semantic tagging (Tags)

CBOR: Tags

● A Tag contains an item
○ 0: text string that represents date/time
○ 1: UNIX time
○ 2 / 3: bignum
○ 24: CBOR item nested (byte stream)
○ 32…: URI

CBOR: example

• http://cbor.me
– Converts to (~JSON) to CBOR and viceversa

http://cbor.me/

CBOR: implementations

• Generating/parsing CBOR is easy
– Smallest implementation: 822 bytes!

• Many implementations (>25)
– https://cbor.io/impls.html

https://cbor.io/impls.html

References

• Data serialization formats
– https://en.wikipedia.org/wiki/Comparison_of_data-serialization_formats
– https://docs.python-guide.org/scenarios/serialization/

• XML
– https://tools.ietf.org/html/rfc3470
– https://www.ibm.com/developerworks/xml/tutorials/xmlintro/xmlintro.html

• EXI
– https://www.w3.org/TR/exi-primer/
– https://exificient.github.io

• JSON
– https://json.org/
– https://tools.ietf.org/html/rfc8259

https://en.wikipedia.org/wiki/Comparison_of_data-serialization_formats
https://docs.python-guide.org/scenarios/serialization/
https://tools.ietf.org/html/rfc3470
https://www.ibm.com/developerworks/xml/tutorials/xmlintro/xmlintro.html
https://www.w3.org/TR/exi-primer/
https://exificient.github.io/
https://json.org/
https://tools.ietf.org/html/rfc8259

References

• BSON
– http://bsonspec.org/

• CBOR
– https://cbor.io
– https://en.wikipedia.org/wiki/CBOR
– https://tools.ietf.org/html/rfc7049

http://bsonspec.org/
https://cbor.io/
https://en.wikipedia.org/wiki/CBOR
https://tools.ietf.org/html/rfc7049

