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OBJECTIVES:

] To define process-to-process communication at the transport
layer and compare it with host-to-host communication at the
network layer.

J To discuss the addressing mechanism at the transport layer, to
discuss port numbers, and to define the range of port numbers
used for different purposes.

J To explain the packetizing issue at the transport layer:
encapsulation and decapsulation of messages.

 To discuss multiplexing (many-to-one) and demultiplexing (one-
to-many) services provided by the transport layer.

(1 To discuss flow control and how it can be achieved at the
transport layer.
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OBJECTIVES (continued):

J To discuss error control and how It can be achieved at the
transport layer.

 To discuss congestion control and how it can be achieved at the
transport layer.

. To discuss the connectionless and connection-oriented services at
the transport layer and show their implementation using an
FSM.

] To discuss the behavior of four generic transport-layer protocols
and their applications: simple protocol, Stop-and-Wait protocol,
Go-Back-N protocol, and Selective-Repeat protocol.

(J To describe the idea of bidirectional communication at the
transport layer using the piggybacking method.
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Chapter 13.1 Transport-Layer Services

Outline 13.2 Transport-Layer Protocols
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13-1 TRANSPORT-LAYER SERVICES

As we discussed in Chapter 2, the transport layer
IS located between the network layer and the
application layer. The transport layer s
responsible for providing services to the
application layer; it receives services from the
network layer. In this section, we discuss the
services that can be provided by a transport
ayer, in the next section, we discuss the

orinciple beyond several transport layer
protocols.
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Topics Discussed in the Sectio

v’ Process-to-Process Communic
v’ Addressing: Port Numbers

v’ Encapsulation and Decapsula
v’ Multiplexing and Demultiplex
v Flow Control

v’ Error Control

v’ Congestion Control

v’ Connectionless and Connectio
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Figure 13.1 Network layer versus transport layer
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Figure 13.2 Port numbers
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Figure 13.3 IP addresses versus port numbers
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Figure 13.4
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The well-known port numbers are

Note

less than 1,024.
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Figure 13.5 Socket address
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Figure 13.6 Encapsulation and decapsulation
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Figure 13.7 Multiplexing and demultiplexing
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Figure 13.8 Pushing or pulling
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Figure 13.9 Flow control at the transport layer
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Figure 13.10 Error control at the transport layer
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Figure 13.11 Sliding window in circular format
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Figure 13.12 Sliding window in linear format
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Figure 13.13 Connectionless service
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Figure 13.14 Connection-oriented service
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Figure 13.15
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13-2 TRANSPORT-LAYER PROTOCOLS

We can create a transport-layer protocol by
combining a set of services described in the
previous sections. To better understand the
behavior of these protocols, we start with the
simplest one and gradually add more complexity.
The TCP/IP protocol uses a transport layer
protocol that is either a modification or a
combination of some of these protocols.
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Topics Discussed in the Sectic

v’ Simple Protocol

v’ Stop-and-Wait Protocol

v’ Go-Back-N Protocol

v’ Selective-Repeat Protocol

v’ Bidirectional Protocols: Pigg
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Figure 13.16 Simple protocol
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Figure 13.17 FSMs for simple protocol
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Note

The simple protocol is a connectionless

protocol that provides neither
flow nor error control.
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Example 13.3

Figure 13.18 shows an example of communication using
this protocol. It is very simple. The sender sends packets
one after another without even thinking about the receiver.
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Figure 13.18 Example 13.3
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Figure 13.19 Stop-and-wait protocol
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‘ Note I

In Stop-and-Wait protocol, flow
control is achieved by forcing the
sender to wait for an acknowledgment,

and error control is achieved by
discarding corrupted packets and letting
the sender resend unacknowledged
packets when the timer expires.
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‘ Note I

In the Stop-and-Wait protocol, we can
use a 1-bit field to number the packets.

The sequence numbers are based on

modulo-2 arithmetic.

TCP/IP Protocol Suite
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‘ Note I

In the Stop-and-Wait protocol, the
acknowledgment number always

announces in modulo-2 arithmetic the
sequence number of the next packet
expected.

TCP/IP Protocol Suite
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‘ Note I

All calculation in the Stop-and-Wait

protocol is in modulo 2.

TCP/IP Protocol Suite
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Figure 13.20 FSMs for stop-and-wait protocol
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Example 13.4

Figure 13.21 shows an example of Stop-and-Wait protocol.
Packet O is sent and acknowledged. Packet 1 is lost and
resent after the time-out. The resent packet 1 s
acknowledged and the timer stops. Packet 0 is sent and
acknowledged, but the acknowledgment is lost. The sender
has no idea if the packet or the acknowledgment is lost, so
after the time-out, it resends packet O, which s
acknowledged.
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Figure 13.21 Example 13.4
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Example 13.5

Assume that, in a Stop-and-Wait system, the bandwidth of
the line is 1 Mbps, and 1 bit takes 20 milliseconds to make
a round trip. What is the bandwidth-delay product? If the
system data packets are 1,000 bits in length, what is the
utilization percentage of the link?

Solution

The bandwidth-delay product is (1 x 10%) x (20 x 107°) =
20,000 bits. The system can send 20,000 bits during the
time it takes for the data to go from the sender to the
receiver and the acknowledgment to come back. However,
the system sends only 1,000 bits. We can say that the link
utilization is only 1,000/20,000, or 5 percent. For this
reason, for a link with a high bandwidth or long delay, the
use of Stop-and-Wait wastes the capacity of the link.
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Example 13.6

What is the utilization percentage of the link in Example
13.5 if we have a protocol that can send up to 15 packets
before stopping and worrying about the
acknowledgments?

Solution

The bandwidth-delay product is still 20,000 bits. The
system can send up to 15 packets or 15,000 bits during a
round trip. This means the utilization is 15,000/20,000, or
/5 percent. Of course, If there are damaged packets, the
utilization percentage is much less because packets have
to be resent.
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Figure 13.22 Go-Back-N protocol
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‘ Note I

In the Go-Back-N Protocol, the sequence
numbers are modulo 2™, where m is the

size of the sequence number

field In bits.

TCP/IP Protocol Suite
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‘ Note I

In the Go-Back-N protocol, the
acknowledgment number is

cumulative and defines the sequence
number of the next packet
expected to arrive.

TCP/IP Protocol Suite
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Figure 13.23 Send window for Go-Back-N
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‘ Note I

The send window Is an abstract concept
defining an imaginary box of maximum

size = 2™ = 1 with three variables:

S, S, and S

size*

TCP/IP Protocol Suite
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‘ Note I

The send window can slide one or
more slots when an error-free ACK

with ackNo between S; and S,
(in modular arithmetic) arrives.

TCP/IP Protocol Suite
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Figure 13.24 Sliding the send window
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Figure 13.25 Receive window for Go-Back-N
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The recelve window IS an abstract
concept defining an imaginary
box of size 1 with

one single variable R,..

he window slides when a correct
packet has arrived; sliding
occurs one slot at a time.
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Figure 13.26 FSMs for Go-Back-N
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Figure 13.27 Send window size for Go-Back-N
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‘ Note I

In the Go-Back-N protocol, the size of
the send window must be less than 2m:;

the size of the recelive window

Is always 1.

TCP/IP Protocol Suite
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Example 13.7

Figure 13.28 shows an example of Go-Back-N. This is an
example of a case where the forward channel is reliable,
but the reverse is not. No data packets are lost, but some
ACKs are delayed and one is lost. The example also shows
how cumulative acknowledgments can  help If
acknowledgments are delayed or lost.
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Figure 13.28 Example 13.7
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Example 13.8

Figure 13.29 shows what happens when a packet is lost.
Packets 0, 1, 2, and 3 are sent. However, packet 1 is lost.
The receiver receives packets 2 and 3, but they are
discarded because they are received out of order (packet 1
IS expected). When the receiver receives packets 2 and 3, it
sends ACK1 to show that it expects to receive packet 1.
However, these ACKs are not useful for the sender because
the ackNo is equal S;, not greater that S; . So the sender
discards them. When the time-out occurs, the sender
resends packets 1, 2, and 3, which are acknowledged..
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Figure 13.29 Example 13.8
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Figure 13.30 Outline of Selective-Repeat
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Figure 13.31 Send window for Selective-Repeat protocol
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Figure 13.32 Receive window for Selective-Repeat protocol
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‘ Note I

In the Selective-Repeat protocol, an
acknowledgment number defines

the sequence number of the

error-free packet received.

TCP/IP Protocol Suite
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Example 13.9

Assume a sender sends 6 packets: packets O, 1, 2, 3, 4, and
5. The sender receives an ACK with ackNo = 3. What is the
Interpretation if the system is using GBN or SR?

Solution

If the system is using GBN, it means that packets 0, 1, and
2 have been received uncorrupted and the receiver is
expecting packet 3. If the system is using SR, it means that
packet 3 has been received uncorrupted; the ACK does not
say anything about other packets.
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Figure 13.33
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Example 13.10

This example is similar to Example 3.8 (Figure 13.29) in
which packet 1 is lost. We show how Selective-Repeat
behaves in this case. Figure 13.34 shows the situation. At
the sender, packet 0 is transmitted and acknowledged.
Packet 1 is lost. Packets 2 and 3 arrive out of order and are
acknowledged. When the timer times out, packet 1 (the
only unacknowledged packet) Is resent and is
acknowledged. The send window then slides.
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Figure 13.34 Example 13.10
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Figure 13.35 Selective-Repeat window size
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In Selective-Repeat, the size of the

Note

sender and recelver window

can be at most one-half of 2m.
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Figure 13.36  Design of piggybacking for Go-Back-N
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OBJECTIVES:

J To introduce TCP as a protocol that provides reliable stream
delivery service.

] To define TCP features and compare them with UDP features.
] To define the format of a TCP segment and its fields.

 To show how TCP provides a connection-oriented service, and
show the segments exchanged during connection establishment
and connection termination phases.

] To discuss the state transition diagram for TCP and discuss some
scenarios.

1 To introduce windows in TCP that are used for flow and error
control.
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OBJECTIVES ( continued):

 To discuss how TCP implements flow control in which the
receive window controls the size of the send window.

 To discuss error control and FSMs used by TCP during the data
transmission phase.

1 To discuss how TCP controls the congestion in the network using
different strategies.

] To list and explain the purpose of each timer in TCP.

1 To discuss options in TCP and show how TCP can provide
selective acknowledgment using the SACK option.

1 To give a layout and a simplified pseudocode for the TCP
package.
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15.1 TCP Services

15.2 TCP Features
15.3 Segment

15.4 A TCP Connection
15.5 State Transition Diagram
15.6 Windows in TCP
15.7 Flow Control

15.8 Error Control

15.9 Congestion Control
15.10 TCP Timers

15.11 Options
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15-1 TCP SERVICES

Figure 15.1 shows the relationship of TCP to the
other protocols in the TCP/IP protocol suite.
TCP lies between the application layer and the
network layer, and serves as the intermediary
between the application programs and the
network operations.
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Topics Discussed in the Section

v’ Process-to-Process Communication
v’ Stream Delivery Service

v’ Full-Duplex Communication

v Multiplexing and Demultiplexing
v’ Connection-Oriented Service

v’ Reliable Service

TCP/IP Protocol Suite
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Figure 15.1 TCP/IP protocol suite
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Table 15.1 Well-known Ports used by TCP

Port Protocol Description
7 Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received

11 Users Active users

13 Daytime Returns the date and the time

17 Quote Returns a quote of the day

19 Chargen Returns a string of characters

20 and 21 FTP File Transfer Protocol (Data and Control)

23 TELNET Terminal Network

25 SMTP Simple Mail Transfer Protocol

53 DNS Domain Name Server

67 BOOTP Bootstrap Protocol

79 Finger Finger

80 HTTP Hypertext Transfer Protocol

TCP/IP Protocol Suite
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Figure 15.2 Stream delivery
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Figure 15.3 Sending and receiving buffers
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Figure 15.4 TCP segments
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15-2 TCP FEATURES

To provide the services mentioned Iin the
previous section, TCP has several features that
are Dbriefly summarized in this section and
discussed later in detall.
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Topics Discussed in the Section

v Numbering System
v’ Flow Control
v’ Error Control
v’ Congestion Control

TCP/IP Protocol Suite
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‘ Note I

The bytes of data being transferred in
each connection are numbered by TCP.

The numbering starts with an arbitrarily
generated number.

TCP/IP Protocol Suite
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Example 15.1

Suppose a TCP connection is transferring a file of 5,000
bytes. The first byte is numbered 10,001. What are the
sequence numbers for each segment if data are sent in five
segments, each carrying 1,000 bytes?

Solution
The following shows the sequence number for each
segment:

Segment 1 —  Sequence Number: 10,001 Range: 10,001 to 11,000
Segment 2 —  Sequence Number: 11,001 Range: 11,001  to 12,000
Segment 3 —  Sequence Number: 12,001 Range: 12,001  to 13,000
Segment 4 —  Sequence Number: 13,001 Range: 13,001 to 14,000
Segment 5 — Sequence Number: 14,001 Range: 14,001 to 15,000
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‘ Note I

The value in the sequence number
field of a segment defines the number

assigned to the first data byte

contained in that segment.

TCP/IP Protocol Suite
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‘ Note I

The value of the acknowledgment field
In a segment defines the number of the
next byte a party expects to receive.

The acknowledgment number Is

cumulative.

TCP/IP Protocol Suite

83



15-3 SEGMENT

Before discussing TCP in more detail, let us
discuss the TCP packets themselves. A packet in
TCP is called a segment.
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Topics Discussed in the Section

v’ Format
v’ Encapsulation

TCP/IP Protocol Suite
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Figure 15.5 TCP segment format

|, 20 to 60 bytes
) >
4—’ Header Data
a. Segment
1 16 31
Source port address Destination port address
16 bits 16 bits
Sequence number
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Acknowledgment number
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HLEN Reserved [ARPSRERIEARS Window size
4 bits 6bits  pARARAEIRIRS 16 bits
Checksum Urgent pointer
16 bits 16 bits
Options and padding

b. Header
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Figure 15.6 Control field

URG: Urgent pointer 1s valid RST: Reset the connection
ACK: Acknowledgment 1s valid SYN: Synchronize sequence numbers
PSH: Request for push FIN: Terminate the connection

URG PSH RST FIN

6 bits
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Figure 15.7 Pseudoheader added to the TCP segment
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‘ Note I

The use of the checksum in TCP Is

mandatory.

TCP/IP Protocol Suite

89



Figure 15.8 Encapsulation
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15-4 ATCP CONNECTION

TCP 1s connection-oriented. It establishes a
virtual path between the source and destination.
All of the segments belonging to a message are
then sent over this virtual path. You may wonder
how TCP, which uses the services of IP, a
connectionless protocol, can be connection-
oriented. The point is that a TCP connection iIs
virtual, not physical. TCP operates at a higher
level. TCP uses the services of IP to deliver
Individual segments to the receiver, but it
controls the connection itself. If a segment is lost
or corrupted, it is retransmitted.
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Topics Discussed in the Section

v’ Connection Establishment
v’ Data Transfer

v’ Connection Termination
v’ Connection Reset

TCP/IP Protocol Suite
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| Figure 15.9 Connection establishment using three-way handshake
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Note

A SYN segment cannot carry data, but it

consumes one sequence number.
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Note

T
i

A SYN + ACK segment cannot carry

data, but does consume one

sequence number.
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Note

An ACK segment, if carrying no data,

consumes no sequence number.
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Figure 15.10 Data Transfer
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Figure 15.11 Connection termination using three-way handshake
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Note

The FIN segment consumes one

sequence number If It does
not carry data.
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Note

|: o

The FIN + ACK segment consumes one

sequence number If It does
not carry data.
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Figure 15.12 Half-Close
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15-5 STATE TRANSITION DIAGRAM

To keep track of all the different events
happening during connection establishment,
connection termination, and data transfer, TCP

IS specified as the finite state machine shown in
Figure 15.13.
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Topics Discussed in the Section

v’ Scenarios
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Figure 15.13 State transition diagram
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‘ Note I

The state marked as ESTBLISHED
In the FSM Is In fact two different

sets of states that the client
and server undergo to transfer data.
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Table 15.2  States for TCP

State Description
CLOSED No connection exists
LISTEN Passive open received; waiting for SYN
SYN-SENT SYN sent; waiting for ACK
SYN-RCVD SYN+ACK sent; waiting for ACK
ESTABLISHED Connection established; data transfer in progress
FIN-WAIT-1 First FIN sent; waiting for ACK
FIN-WAIT-2 ACK to first FIN received; waiting for second FIN
CLOSE-WAIT First FIN received, ACK sent; waiting for application to close
TIME-WAIT Second FIN received, ACK sent; waiting for 2MSL time-out
LAST-ACK Second FIN sent; waiting for ACK
CLOSING Both sides decided to close simultaneously

TCP/IP Protocol Suite
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Figure 15.14 Transition diagram for connection and half-close termination
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Figure 15.15 Time-line diagram for Figure 15.14
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Figure 15.16 Transition diagram for a common scenario
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Figure 15.17 Time line for a common scenario
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Figure 15.18 Simultaneous open
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Figure 15.19 Simultaneous close
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Figure 15.20 Denying a connection
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Figure 15.21 Aborting a connection
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15-6 WINDOWS IN TCP

Before discussing data transfer in TCP and the
Issues such as flow, error, and congestion control,
we describe the windows used in TCP. TCP uses
two windows (send window and receive window)
for each direction of data transfer, which means
four windows for a bidirectional communication.
To make the discussion simple, we make an
assumption that communication is only
unidirectional; the bidirectional communication
can be inferred using two unidirectional
communications with piggybacking.
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Topics Discussed in the Section

v’ Send Window
v' Receive Window

TCP/IP Protocol Suite 116



Figure 15.22 Send window in TCP
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Figure 15.23 Receive window in TCP
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15-7 FLOW CONTROL

As discussed in Chapter 13, flow control
balances the rate a producer creates data with
the rate a consumer can use the data. TCP
separates flow control from error control. In this
section we discuss flow control, ignoring error
control. We temporarily assume that the logical
channel between the sending and receiving TCP
Is error-free. Figure 15.24 shows unidirectional
data transfer between a sender and a receiver;
bidirectional data transfer can be deduced from
unidirectional one as discussed in Chapter 13.
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Topics Discussed in the Section

v’ Opening and Closing Windows
v’ Shrinking of Windows
v Silly Window Syndrome
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Figure 15.24 TCP/IP protocol suite
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Figure 15.25 An example

of flow control
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Example 15.2

Figure 15.26 shows the reason for the mandate in window
shrinking. Part a of the figure shows values of last
acknowledgment and rwnd. Part b shows the situation in
which the sender has sent bytes 206 to 214. Bytes 206 to
209 are acknowledged and purged. The new advertisement,
however, defines the new value of rwnd as 4, in which 210 +
4 < 206 + 12. When the send window shrinks, it creates a
problem: byte 214 which has been already sent is outside
the window. The relation discussed before forces the
receiver to maintain the right-hand wall of the window to be
as shown in part a because the receiver does not know
which of the bytes 210 to 217 has already been sent. One
way to prevent this situation is to let the receiver postpone
Its feedback until enough buffer locations are available In
Its window. In other words, the receiver should wait until

more bytes are consumed by its process.
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Figure 15.26 Example 15.2
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15-8 ERROR CONTROL

TCP is areliable transport layer protocol. This
means that an application program that
delivers a stream of datato TCP relies on TCP
to deliver the entire stream to the application
program on the other end in order, without
error, and without any part lost or duplicated.
Error control in TCP is achieved through
the use of three tools: checksum,
acknowledgment, and time-out.

TCP/IP Protocol Suite
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Topics Discussed in the Section

v’ Checksum

v’ Acknowledgment

v Retransmission

v’ Out-of-Order Segments

v’ FSMs for Data Transfer in TCP
v Some Scenarios
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Note

ACK segments do not consume

sequence numbers and
are not acknowledged.
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‘ Note I

Data may arrive out of order and be
temporarily stored by the receiving TCP,

but TCP guarantees that no out-of-order
data are delivered to the process.
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‘ Note I

TCP can be best modeled as a

Selective Repeat protocol.
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Figure 15.27 Simplified FSM for sender site
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Figure 15.28 Simplified FSM for the receiver site
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Figure 15.29 Normal operation
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Figure 15.30 Lost segment
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|: o

Note

The recelver TCP delivers only ordered

data to the process.
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Figure 15.31 Fast retransmission
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Figure 15.32 Lost acknowledgment
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Figure 15.33 Lost acknowledgment corrected by resending a segment
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‘ Note I

Lost acknowledgments may create

deadlock if they are not
properly handled.
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15-9 CONGESTION CONTROL

We discussed congestion control in Chapter 13.
Congestion control in TCP is based on both open
loop and closed-loop mechanisms. TCP uses a
congestion window and a congestion policy that
avoid congestion and detect and alleviate
congestion after it has occurred.
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Topics Discussed in the Section

v’ Congestion Window
v’ Congestion Policy
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Figure 15.34 Slow start, exponential increase
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‘ Note I

In the slow start algorithm, the size of
the congestion window increases

exponentially until it reaches a
threshold.
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Figure 15.35 Congestion avoidance, additive increase
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‘ Note I

In the congestion avoidance algorithm
the size of the congestion window

Increases additively until
congestion Is detected.
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Figure 15.36 TCP Congestion policy summary
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Figure 15.37 Congestion example
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15-10 TCP TIMERS

To perform its operation smoothly, most TCP
Implementations use at least four timers as shown
In Figure 15.38 (slide 83).
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Topics Discussed in the Section

v
v
v

Retransmission Timer
Persistence Timer

Keepalive Timer

v TIME-WAIT Timer
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Figure 15.38 TCP timers
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Note

|: o

In TCP, there can be only one RTT

measurement in progress at any time.
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Example 15.3

Let us give a hypothetical example. Figure 15.39 shows
part of a connection. The figure shows the connection

establishment and part of the data transfer phases.

1. When the SYN segment is sent, there is no value for
RTTM, RTTS, or RTTD. The value of RTO is set to 6.00
seconds. The following shows the value of these

variable at this moment:
RTO =6

2. When the SYN+ACK segment arrives, RTTM s
measured and is equal to 1.5 seconds.

RTTy =1.5
RTTg =15

RTTp =(1.5)/2 =0.75
RTO =15 +4 x0.75 = 4.5
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Example 15.3 Continued

3. When the first data segment is sent, a new RTT

measurement starts. No RTT measurement starts for the
second data segment because a measurement IS
already in progress. The arrival of the last ACK segment
IS used to calculate the next value of RTTM. Although
the last ACK segment acknowledges both data
segments (cumulative), its arrival finalizes the value of
RTTM for the first segment. The values of these
variables are now as shown below.

RTTy = 2.5
RTTg = 7/8 X1.5 + (1/8) X 2.5 = 1.625

RTTy, =3/4 (7.5) + (1/4) X |1.625 — 2.5| = 0.78
RTO =1.625+4x0.78 =4.74
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Figure 15.39 Example 15.3
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‘ Note I

TCP does not consider the RTT of a

retransmitted segment in its
calculation of a new RTO.
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Example 15.4

Figure 15.40 is a continuation of the previous example.
There is retransmission and Karn’s algorithm is applied.

The first segment in the figure is sent, but lost. The RTO
timer expires after 4.74 seconds. The segment s
retransmitted and the timer is set to 9.48, twice the previous
value of RTO. This time an ACK is received before the time-
out. We wait until we send a new segment and receive the
ACK for it before recalculating the RTO (Karn’s algorithm).
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Figure 15.40 Example 15.4
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Program

(UDP)
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OBJECTIVES:

 To introduce UDP and show its relationship to other protocols in
the TCP/IP protocol suite.

1 To explain the format of a UDP packet and discuss the use of
each field in the header.

] To discuss the services provided by the UDP such as process-to-
process delivery, multiplexing/demultiplexing, and queuing.

 To show how to calculate the optional checksum and the sender
the needs to add a pseudoheader to the packet when calculating
the checksum.

J To discuss how some application programs can benefit from the
simplicity of UDP.

J To briefly discuss the structure of the UDP package.
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Outline
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14.1 Introduction
14.2 User Datagram
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14.4 UDP Application
14.5 UDP Package
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14-1 INTRODUCTION

Figure 14.1 shows the relationship of the User Datagram Protocol (UDP) to
the other protocols and layers of the TCP/IP protocol suite: UDP is located
between the application layer and the IP layer, and serves as the
intermediary between the application programs and the network operations.
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Figure 14.1 Position of UDP in the TCP/IP protocol suite
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14-2 USER DATAGRAM

UDP packets, called user datagrams, have a fixed-size header of 8 bytes.
Figure 14.2 shows the format of a user datagram.
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Figure 14.2 User datagram format
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Example 14.1

The following is a dump of a UDP header in hexadecimal
format.

CB84000D001C001C

a. What is the source port number?

b. What is the destination port number?

c. What is the total length of the user datagram?

d. What is the length of the data?

e. Is the packet directed from a client to a server or vice
versa?

f. What is the client process?
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Example 14.1 Continued

Solution

a. The source port number is the first four hexadecimal
digits (CB84),, or 52100.

b. The destination port number is the second four
hexadecimal digits (000D),, or 13.

c. The third four hexadecimal digits (001C),, define the
length of the whole UDP packet as 28 bytes.

d. The length of the data is the length of the whole packet
minus the length of the header, or 28 — 8 = 20 bytes.

e. Since the destination port number is 13 (well-known
port), the packet is from the client to the server.

f. The client process is the Daytime (see Table 14.1).
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14-3 UDP Services

We discussed the general services provided by a transport layer protocol in
Chapter 13. In this section, we discuss what portions of those general
services are provided by UDP.
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Topics Discussed in the Section

v’ Process-to-Process Communication
v’ Connectionless Service

v’ Flow Control

v’ Error Control

v’ Congestion Control

v’ Encapsulation and Decapsulation
v’ Queuing

v’ Multiplexing and Demultiplexing

v’ Comparison between UDP and Generic Simple
Protocol
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Table 14.1 Well-known Ports used with UDP

Port Protocol Description
7 Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received
11 Users Active users
13 Daytime Returns the date and the time
17 Quote Returns a quote of the day
19 Chargen Returns a string of characters
53 Domain Domain Name Service (DNS)
67 Bootps Server port to download bootstrap information
68 Bootpc Client port to download bootstrap information
69 TFTP Trivial File Transfer Protocol
111 RPC Remote Procedure Call
123 NTP Network Time Protocol
161 SNMP Simple Network Management Protocol
162 SNMP Simple Network Management Protocol (trap)
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Figure 14.3 Pseudoheader for checksum calculation
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Example 14.2

Figure 14.4 shows the checksum calculation for a very
small user datagram with only 7 bytes of data. Because the
number of bytes of data is odd, padding is added for
checksum calculation. The pseudoheader as well as the
padding will be dropped when the user datagram is
delivered to IP (see Appendix F).
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Figure 14.4 Checksum calculation for a simple UDP user datagram
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Example 14.3

What value is sent for the checksum in one of the following
hypothetical situations?

a. The sender decides not to include the checksum.

b. The sender decides to include the checksum, but the
value of the sum is all 1s.

c. The sender decides to include the checksum, but the
value of the sum is all 0s.

TCP/IP Protocol Suite 172



Example 14.3 Continued

Solution
a. The value sent for the checksum field is all 0Os to show
that the checksum is not calculated.

b. When the sender complements the sum, the result is all
0s; the sender complements the result again before
sending. The value sent for the checksum is all 1s. The
second complement operation is needed to avoid
confusion with the case in part a.

c. This situation never happens because it implies that the
value of every term included in the calculation of the
sum is all Os, which is impossible; some fields in the
pseudoheader have nonzero values (see Appendix D).
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Figure 14.5 Encapsulation and decapsulation
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Figure 14.6 Queues in UDP

Daytime Daytime
client server

iy

—_—
—_—
—_—
—_——
—_——
-
—
——

Outgoing l ‘ Incoming Outgoing l ‘ Incoming

queue queue queue queue
Port 13 Port 13 Port 52000 Port 52000
UDP uDP

TCP/IP Protocol Suite 175



Figure 14.7 Multiplexing and demultiplexing
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‘Note I
UDP Is an example of the
connectionless simple protocol we

discussed in Chapter 13 with the
exception of an optional checksum
added to packets for error detection.
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14-4 UDP APPLICATION

Although UDP meets almost none of the criteria we mentioned in Chapter 13
for a reliable transport-layer protocol, UDP is preferable for some
applications. The reason is that some services may have some side effects
that are either unacceptable or not preferable. An application designer needs
sometimes to compromise to get the optimum.
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Topics Discussed in the Section

v UDP Features
v’ Typical Applications
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Example 14.4

A client-server application such as DNS (see Chapter 19)
uses the services of UDP because a client needs to send a
short request to a server and to receive a quick response
from it. The request and response can each fit in one user
datagram. Since only one message Is exchanged in each
direction, the connectionless feature is not an issue; the
client or server does not worry that messages are delivered
out of order.
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Example 14.5

A client-server application such as SMTP (see Chapter 23),
which is used in electronic mail, cannot use the services of
UDP because a user can send a long e-mail message,
which may include multimedia (images, audio, or video). If
the application uses UDP and the message does not fit in
one single user datagram, the message must be split by the
application into different user datagrams. Here the
connectionless service may create problems. The user
datagrams may arrive and be delivered to the receiver
application out of order. The receiver application may not
be able to reorder the pieces. This means the
connectionless service has a disadvantage for an
application program that sends long messages.
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Example 14.6

Assume we are downloading a very large text file from the
Internet. We definitely need to use a transport layer that
provides reliable service. We don’t want part of the file to
be missing or corrupted when we open the file. The delay
created between the delivery of the parts are not an
overriding concern for us; we wait until the whole file is
composed before looking at it. In this case, UDP is not a
suitable transport layer.
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Example 14.7

Assume we are watching a real-time stream video on our
computer. Such a program is considered a long file; it Is
divided into many small parts and broadcast in real time.
The parts of the message are sent one after another. If the
transport layer is supposed to resend a corrupted or lost
frame, the synchronizing of the whole transmission may
be lost. The viewer suddenly sees a blank screen and
needs to wait until the second transmission arrives. This is
not tolerable. However, if each small part of the screen is
sent using one single user datagram, the receiving UDP
can easily ignore the corrupted or lost packet and deliver
the rest to the application program. That part of the screen
IS blank for a very short period of the time, which most
viewers do not even notice. However, video cannot be
viewed out of order, so streaming audio, video, and voice
applications that run over UDP must reorder or drop
frames that are out of sequence.
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14-5 UDP PACKAGE

To show how UDP handles the sending and receiving of UDP packets, we
present a simple version of the UDP package.

We can say that the UDP package involves five components: a control-

block table, input queues, a control-block module, an input module, and an
output module.
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