
TCP/IP Protocol Suite 1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Introduction to the Transport

Layer

TCP/IP Protocol Suite 2

OBJECTIVES:
❑ To define process-to-process communication at the transport

layer and compare it with host-to-host communication at the

network layer.

❑ To discuss the addressing mechanism at the transport layer, to

discuss port numbers, and to define the range of port numbers

used for different purposes.

❑ To explain the packetizing issue at the transport layer:

encapsulation and decapsulation of messages.

❑ To discuss multiplexing (many-to-one) and demultiplexing (one-

to-many) services provided by the transport layer.

❑ To discuss flow control and how it can be achieved at the

transport layer.

TCP/IP Protocol Suite 3

OBJECTIVES (continued):
❑ To discuss error control and how it can be achieved at the

transport layer.

❑ To discuss congestion control and how it can be achieved at the

transport layer.

❑ To discuss the connectionless and connection-oriented services at

the transport layer and show their implementation using an

FSM.

❑ To discuss the behavior of four generic transport-layer protocols

and their applications: simple protocol, Stop-and-Wait protocol,

Go-Back-N protocol, and Selective-Repeat protocol.

❑ To describe the idea of bidirectional communication at the

transport layer using the piggybacking method.

TCP/IP Protocol Suite 4

Chapter
Outline

13.1 Transport-Layer Services

13.2 Transport-Layer Protocols

TCP/IP Protocol Suite 5

13-1 TRANSPORT-LAYER SERVICES

As we discussed in Chapter 2, the transport layer

is located between the network layer and the

application layer. The transport layer is

responsible for providing services to the

application layer; it receives services from the

network layer. In this section, we discuss the

services that can be provided by a transport

layer; in the next section, we discuss the

principle beyond several transport layer

protocols.

TCP/IP Protocol Suite 6

Topics Discussed in the Section

✓ Process-to-Process Communication

✓Addressing: Port Numbers

✓ Encapsulation and Decapsulation

✓Multiplexing and Demultiplexing

✓ Flow Control

✓ Error Control

✓ Congestion Control

✓ Connectionless and Connection-Oriented Services

TCP/IP Protocol Suite 7

Figure 13.1 Network layer versus transport layer

TCP/IP Protocol Suite 8

Figure 13.2 Port numbers

TCP/IP Protocol Suite 9

Figure 13.3 IP addresses versus port numbers

13

Data

Destination port number
selects the process

TCP/IP Protocol Suite 10

Figure 13.4 ICANN ranges

TCP/IP Protocol Suite 11

The well-known port numbers are

less than 1,024.

Note

TCP/IP Protocol Suite 12

Figure 13.5 Socket address

TCP/IP Protocol Suite 13

Figure 13.6 Encapsulation and decapsulation

TCP/IP Protocol Suite 14

Figure 13.7 Multiplexing and demultiplexing

TCP/IP Protocol Suite 15

Figure 13.8 Pushing or pulling

TCP/IP Protocol Suite 16

Figure 13.9 Flow control at the transport layer

TCP/IP Protocol Suite 17

Figure 13.10 Error control at the transport layer

Packets

Error Control

TCP/IP Protocol Suite 18

Figure 13.11 Sliding window in circular format

TCP/IP Protocol Suite 19

Figure 13.12 Sliding window in linear format

TCP/IP Protocol Suite 20

Figure 13.13 Connectionless service

TCP/IP Protocol Suite 21

Figure 13.14 Connection-oriented service

TCP/IP Protocol Suite 22

Figure 13.15 Connectionless and connection-oriented services as FSMs

TCP/IP Protocol Suite 23

13-2 TRANSPORT-LAYER PROTOCOLS

We can create a transport-layer protocol by

combining a set of services described in the

previous sections. To better understand the

behavior of these protocols, we start with the

simplest one and gradually add more complexity.

The TCP/IP protocol uses a transport layer

protocol that is either a modification or a

combination of some of these protocols.

TCP/IP Protocol Suite 24

Topics Discussed in the Section

✓ Simple Protocol

✓ Stop-and-Wait Protocol

✓ Go-Back-N Protocol

✓ Selective-Repeat Protocol

✓ Bidirectional Protocols: Piggybacking

TCP/IP Protocol Suite 25

Figure 13.16 Simple protocol

TCP/IP Protocol Suite 26

Figure 13.17 FSMs for simple protocol

TCP/IP Protocol Suite 27

The simple protocol is a connectionless

protocol that provides neither

flow nor error control.

Note

TCP/IP Protocol Suite 28

Figure 13.18 shows an example of communication using

this protocol. It is very simple. The sender sends packets

one after another without even thinking about the receiver.

Example 13.3

TCP/IP Protocol Suite 29

Figure 13.18 Example 13.3

TCP/IP Protocol Suite 30

Figure 13.19 Stop-and-wait protocol

TCP/IP Protocol Suite 31

In Stop-and-Wait protocol, flow

control is achieved by forcing the

sender to wait for an acknowledgment,

and error control is achieved by

discarding corrupted packets and letting

the sender resend unacknowledged

packets when the timer expires.

Note

TCP/IP Protocol Suite 32

In the Stop-and-Wait protocol, we can

use a 1-bit field to number the packets.

The sequence numbers are based on

modulo-2 arithmetic.

Note

TCP/IP Protocol Suite 33

In the Stop-and-Wait protocol, the

acknowledgment number always

announces in modulo-2 arithmetic the

sequence number of the next packet

expected.

Note

TCP/IP Protocol Suite 34

All calculation in the Stop-and-Wait

protocol is in modulo 2.

Note

TCP/IP Protocol Suite 35

Figure 13.20 FSMs for stop-and-wait protocol

TCP/IP Protocol Suite 36

Figure 13.21 shows an example of Stop-and-Wait protocol.

Packet 0 is sent and acknowledged. Packet 1 is lost and

resent after the time-out. The resent packet 1 is

acknowledged and the timer stops. Packet 0 is sent and

acknowledged, but the acknowledgment is lost. The sender

has no idea if the packet or the acknowledgment is lost, so

after the time-out, it resends packet 0, which is

acknowledged.

Example 13.4

TCP/IP Protocol Suite 37

Figure 13.21 Example 13.4

TCP/IP Protocol Suite 38

Assume that, in a Stop-and-Wait system, the bandwidth of

the line is 1 Mbps, and 1 bit takes 20 milliseconds to make

a round trip. What is the bandwidth-delay product? If the

system data packets are 1,000 bits in length, what is the

utilization percentage of the link?

Solution

The bandwidth-delay product is (1 × 106) × (20 × 10−3) =

20,000 bits. The system can send 20,000 bits during the

time it takes for the data to go from the sender to the

receiver and the acknowledgment to come back. However,

the system sends only 1,000 bits. We can say that the link

utilization is only 1,000/20,000, or 5 percent. For this

reason, for a link with a high bandwidth or long delay, the

use of Stop-and-Wait wastes the capacity of the link.

Example 13.5

TCP/IP Protocol Suite 39

What is the utilization percentage of the link in Example

13.5 if we have a protocol that can send up to 15 packets

before stopping and worrying about the

acknowledgments?

Solution

The bandwidth-delay product is still 20,000 bits. The

system can send up to 15 packets or 15,000 bits during a

round trip. This means the utilization is 15,000/20,000, or

75 percent. Of course, if there are damaged packets, the

utilization percentage is much less because packets have

to be resent.

Example 13.6

TCP/IP Protocol Suite 40

Figure 13.22 Go-Back-N protocol

TCP/IP Protocol Suite 41

In the Go-Back-N Protocol, the sequence

numbers are modulo 2m, where m is the

size of the sequence number

field in bits.

Note

TCP/IP Protocol Suite 42

In the Go-Back-N protocol, the

acknowledgment number is

cumulative and defines the sequence

number of the next packet

expected to arrive.

Note

TCP/IP Protocol Suite 43

Figure 13.23 Send window for Go-Back-N

TCP/IP Protocol Suite 44

The send window is an abstract concept

defining an imaginary box of maximum

size = 2m − 1 with three variables:

Sf, Sn, and Ssize.

Note

TCP/IP Protocol Suite 45

The send window can slide one or

more slots when an error-free ACK

with ackNo between Sf and Sn

(in modular arithmetic) arrives.

Note

TCP/IP Protocol Suite 46

Figure 13.24 Sliding the send window

TCP/IP Protocol Suite 47

Figure 13.25 Receive window for Go-Back-N

TCP/IP Protocol Suite 48

The receive window is an abstract

concept defining an imaginary

box of size 1 with

one single variable Rn.

The window slides when a correct

packet has arrived; sliding

occurs one slot at a time.

Note

TCP/IP Protocol Suite 49

Figure 13.26 FSMs for Go-Back-N

TCP/IP Protocol Suite 50

Figure 13.27 Send window size for Go-Back-N

TCP/IP Protocol Suite 51

In the Go-Back-N protocol, the size of

the send window must be less than 2m;

the size of the receive window

is always 1.

Note

TCP/IP Protocol Suite 52

Figure 13.28 shows an example of Go-Back-N. This is an

example of a case where the forward channel is reliable,

but the reverse is not. No data packets are lost, but some

ACKs are delayed and one is lost. The example also shows

how cumulative acknowledgments can help if

acknowledgments are delayed or lost.

Example 13.7

TCP/IP Protocol Suite 53

Figure 13.28 Example 13.7

TCP/IP Protocol Suite 54

Figure 13.29 shows what happens when a packet is lost.

Packets 0, 1, 2, and 3 are sent. However, packet 1 is lost.

The receiver receives packets 2 and 3, but they are

discarded because they are received out of order (packet 1

is expected). When the receiver receives packets 2 and 3, it

sends ACK1 to show that it expects to receive packet 1.

However, these ACKs are not useful for the sender because

the ackNo is equal Sf , not greater that Sf . So the sender

discards them. When the time-out occurs, the sender

resends packets 1, 2, and 3, which are acknowledged..

Example 13.8

TCP/IP Protocol Suite 55

Figure 13.29 Example 13.8

TCP/IP Protocol Suite 56

Figure 13.30 Outline of Selective-Repeat

TCP/IP Protocol Suite 57

Figure 13.31 Send window for Selective-Repeat protocol

TCP/IP Protocol Suite 58

Figure 13.32 Receive window for Selective-Repeat protocol

TCP/IP Protocol Suite 59

In the Selective-Repeat protocol, an

acknowledgment number defines

the sequence number of the

error-free packet received.

Note

TCP/IP Protocol Suite 60

Assume a sender sends 6 packets: packets 0, 1, 2, 3, 4, and

5. The sender receives an ACK with ackNo = 3. What is the

interpretation if the system is using GBN or SR?

Solution

If the system is using GBN, it means that packets 0, 1, and

2 have been received uncorrupted and the receiver is

expecting packet 3. If the system is using SR, it means that

packet 3 has been received uncorrupted; the ACK does not

say anything about other packets.

Example 13.9

TCP/IP Protocol Suite 61

Figure 13.33 FSMs for SR protocol

TCP/IP Protocol Suite 62

This example is similar to Example 3.8 (Figure 13.29) in

which packet 1 is lost. We show how Selective-Repeat

behaves in this case. Figure 13.34 shows the situation. At

the sender, packet 0 is transmitted and acknowledged.

Packet 1 is lost. Packets 2 and 3 arrive out of order and are

acknowledged. When the timer times out, packet 1 (the

only unacknowledged packet) is resent and is

acknowledged. The send window then slides.

Example 13.10

TCP/IP Protocol Suite 63

Figure 13.34 Example 13.10

TCP/IP Protocol Suite 64

Figure 13.35 Selective-Repeat window size

TCP/IP Protocol Suite 65

In Selective-Repeat, the size of the

sender and receiver window

can be at most one-half of 2m.

Note

TCP/IP Protocol Suite 66

Figure 13.36 Design of piggybacking for Go-Back-N

TCP/IP Protocol Suite 67
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Transmission

Control

Protocol

(TCP)

TCP/IP Protocol Suite 68

OBJECTIVES:
❑ To introduce TCP as a protocol that provides reliable stream

delivery service.

❑ To define TCP features and compare them with UDP features.

❑ To define the format of a TCP segment and its fields.

❑ To show how TCP provides a connection-oriented service, and

show the segments exchanged during connection establishment

and connection termination phases.

❑ To discuss the state transition diagram for TCP and discuss some

scenarios.

❑ To introduce windows in TCP that are used for flow and error

control.

TCP/IP Protocol Suite 69

OBJECTIVES (continued):
❑ To discuss how TCP implements flow control in which the

receive window controls the size of the send window.

❑ To discuss error control and FSMs used by TCP during the data

transmission phase.

❑ To discuss how TCP controls the congestion in the network using

different strategies.

❑ To list and explain the purpose of each timer in TCP.

❑ To discuss options in TCP and show how TCP can provide

selective acknowledgment using the SACK option.

❑ To give a layout and a simplified pseudocode for the TCP

package.

TCP/IP Protocol Suite 70

Chapter
Outline

15.1 TCP Services

15.2 TCP Features

15.3 Segment

15.4 A TCP Connection

15.5 State Transition Diagram

15.6 Windows in TCP

15.7 Flow Control

15.8 Error Control

15.9 Congestion Control

15.10 TCP Timers

15.11 Options

15.12 TCP Package

TCP/IP Protocol Suite 71

15-1 TCP SERVICES

Figure 15.1 shows the relationship of TCP to the

other protocols in the TCP/IP protocol suite.

TCP lies between the application layer and the

network layer, and serves as the intermediary

between the application programs and the

network operations.

TCP/IP Protocol Suite 72

Topics Discussed in the Section

✓ Process-to-Process Communication

✓ Stream Delivery Service

✓ Full-Duplex Communication

✓Multiplexing and Demultiplexing

✓ Connection-Oriented Service

✓ Reliable Service

TCP/IP Protocol Suite 73

Figure 15.1 TCP/IP protocol suite

TCP/IP Protocol Suite 74

TCP/IP Protocol Suite 75

Figure 15.2 Stream delivery

TCP/IP Protocol Suite 76

Figure 15.3 Sending and receiving buffers

Stream of bytes

TCP/IP Protocol Suite 77

Figure 15.4 TCP segments

Segment 1

H

Segment N

H

TCP/IP Protocol Suite 78

15-2 TCP FEATURES

To provide the services mentioned in the

previous section, TCP has several features that

are briefly summarized in this section and

discussed later in detail.

TCP/IP Protocol Suite 79

Topics Discussed in the Section

✓ Numbering System

✓ Flow Control

✓ Error Control

✓ Congestion Control

TCP/IP Protocol Suite 80

The bytes of data being transferred in

each connection are numbered by TCP.

The numbering starts with an arbitrarily

generated number.

Note

TCP/IP Protocol Suite 81

Suppose a TCP connection is transferring a file of 5,000

bytes. The first byte is numbered 10,001. What are the

sequence numbers for each segment if data are sent in five

segments, each carrying 1,000 bytes?

Solution

The following shows the sequence number for each

segment:

Example 15.1

TCP/IP Protocol Suite 82

The value in the sequence number

field of a segment defines the number

assigned to the first data byte

contained in that segment.

Note

TCP/IP Protocol Suite 83

The value of the acknowledgment field

in a segment defines the number of the

next byte a party expects to receive.

The acknowledgment number is

cumulative.

Note

TCP/IP Protocol Suite 84

15-3 SEGMENT

Before discussing TCP in more detail, let us

discuss the TCP packets themselves. A packet in

TCP is called a segment.

TCP/IP Protocol Suite 85

Topics Discussed in the Section

✓ Format

✓ Encapsulation

TCP/IP Protocol Suite 86

Figure 15.5 TCP segment format

TCP/IP Protocol Suite 87

Figure 15.6 Control field

TCP/IP Protocol Suite 88

Figure 15.7 Pseudoheader added to the TCP segment

TCP/IP Protocol Suite 89

The use of the checksum in TCP is

mandatory.

Note

TCP/IP Protocol Suite 90

Frame
header

IP
header

Figure 15.8 Encapsulation

Application-layer data
TCP
header

Data-link layer payload

IP payload

TCP payload

TCP/IP Protocol Suite 91

15-4 A TCP CONNECTION

TCP is connection-oriented. It establishes a

virtual path between the source and destination.

All of the segments belonging to a message are

then sent over this virtual path. You may wonder

how TCP, which uses the services of IP, a

connectionless protocol, can be connection-

oriented. The point is that a TCP connection is

virtual, not physical. TCP operates at a higher

level. TCP uses the services of IP to deliver

individual segments to the receiver, but it

controls the connection itself. If a segment is lost

or corrupted, it is retransmitted.

TCP/IP Protocol Suite 92

Topics Discussed in the Section

✓ Connection Establishment

✓ Data Transfer

✓ Connection Termination

✓ Connection Reset

TCP/IP Protocol Suite 93

Figure 15.9 Connection establishment using three-way handshake

SYN

U A P R S F

seq: 8000

SYN + ACK
U A P R S F

seq: 15000

ack: 8001

rwnd: 5000

ACK

U A P R S F

seq: 8000
ack: 15001

rwnd: 10000

TCP/IP Protocol Suite 94

A SYN segment cannot carry data, but it

consumes one sequence number.

Note

TCP/IP Protocol Suite 95

A SYN + ACK segment cannot carry

data, but does consume one

sequence number.

Note

TCP/IP Protocol Suite 96

An ACK segment, if carrying no data,

consumes no sequence number.

Note

TCP/IP Protocol Suite 97

Figure 15.10 Data Transfer

Connection Termination

TCP/IP Protocol Suite 98

Figure 15.11 Connection termination using three-way handshake

TCP/IP Protocol Suite 99

The FIN segment consumes one

sequence number if it does

not carry data.

Note

TCP/IP Protocol Suite 100

The FIN + ACK segment consumes one

sequence number if it does

not carry data.

Note

TCP/IP Protocol Suite 101

Figure 15.12 Half-Close

TCP/IP Protocol Suite 102

15-5 STATE TRANSITION DIAGRAM

To keep track of all the different events

happening during connection establishment,

connection termination, and data transfer, TCP

is specified as the finite state machine shown in

Figure 15.13.

TCP/IP Protocol Suite 103

Topics Discussed in the Section

✓ Scenarios

TCP/IP Protocol Suite 104

Figure 15.13 State transition diagram

TCP/IP Protocol Suite 105

The state marked as ESTBLISHED

in the FSM is in fact two different

sets of states that the client

and server undergo to transfer data.

Note

TCP/IP Protocol Suite 106

TCP/IP Protocol Suite 107

Figure 15.14 Transition diagram for connection and half-close termination

TCP/IP Protocol Suite 108

Figure 15.15 Time-line diagram for Figure 15.14

TCP/IP Protocol Suite 109

Figure 15.16 Transition diagram for a common scenario

TCP/IP Protocol Suite 110

Figure 15.17 Time line for a common scenario

TCP/IP Protocol Suite 111

Figure 15.18 Simultaneous open

TCP/IP Protocol Suite 112

Figure 15.19 Simultaneous close

TCP/IP Protocol Suite 113

Figure 15.20 Denying a connection

TCP/IP Protocol Suite 114

Figure 15.21 Aborting a connection

TCP/IP Protocol Suite 115

15-6 WINDOWS IN TCP

Before discussing data transfer in TCP and the

issues such as flow, error, and congestion control,

we describe the windows used in TCP. TCP uses

two windows (send window and receive window)

for each direction of data transfer, which means

four windows for a bidirectional communication.

To make the discussion simple, we make an

assumption that communication is only

unidirectional; the bidirectional communication

can be inferred using two unidirectional

communications with piggybacking.

TCP/IP Protocol Suite 116

Topics Discussed in the Section

✓ Send Window

✓ Receive Window

TCP/IP Protocol Suite 117

Figure 15.22 Send window in TCP

TCP/IP Protocol Suite 118

Figure 15.23 Receive window in TCP

TCP/IP Protocol Suite 119

15-7 FLOW CONTROL

As discussed in Chapter 13, flow control

balances the rate a producer creates data with

the rate a consumer can use the data. TCP

separates flow control from error control. In this

section we discuss flow control, ignoring error

control. We temporarily assume that the logical

channel between the sending and receiving TCP

is error-free. Figure 15.24 shows unidirectional

data transfer between a sender and a receiver;

bidirectional data transfer can be deduced from

unidirectional one as discussed in Chapter 13.

TCP/IP Protocol Suite 120

Topics Discussed in the Section

✓ Opening and Closing Windows

✓ Shrinking of Windows

✓ Silly Window Syndrome

TCP/IP Protocol Suite 121

Figure 15.24 TCP/IP protocol suite

Messages
are pushed

1

Segements are pushed

2

Messages
are pulled

3

Flow control feedback

4

Flow control
feedback

5

TCP/IP Protocol Suite 122

Figure 15.25 An example of flow control

TCP/IP Protocol Suite 123

Figure 15.26 shows the reason for the mandate in window

shrinking. Part a of the figure shows values of last

acknowledgment and rwnd. Part b shows the situation in

which the sender has sent bytes 206 to 214. Bytes 206 to

209 are acknowledged and purged. The new advertisement,

however, defines the new value of rwnd as 4, in which 210 +

4 < 206 + 12. When the send window shrinks, it creates a

problem: byte 214 which has been already sent is outside

the window. The relation discussed before forces the

receiver to maintain the right-hand wall of the window to be

as shown in part a because the receiver does not know

which of the bytes 210 to 217 has already been sent. One

way to prevent this situation is to let the receiver postpone

its feedback until enough buffer locations are available in

its window. In other words, the receiver should wait until

more bytes are consumed by its process.

Example 15.2

TCP/IP Protocol Suite 124

Figure 15.26 Example 15.2

TCP/IP Protocol Suite 125

15-8 ERROR CONTROL

TCP is a reliable transport layer protocol. This

means that an application program that

delivers a stream of data to TCP relies on TCP

to deliver the entire stream to the application

program on the other end in order, without

error, and without any part lost or duplicated.

Error control in TCP is achieved through

the use of three tools: checksum,

acknowledgment, and time-out.

TCP/IP Protocol Suite 126

Topics Discussed in the Section

✓ Checksum

✓Acknowledgment

✓ Retransmission

✓ Out-of-Order Segments

✓ FSMs for Data Transfer in TCP

✓ Some Scenarios

TCP/IP Protocol Suite 127

ACK segments do not consume

sequence numbers and

are not acknowledged.

Note

TCP/IP Protocol Suite 128

Data may arrive out of order and be

temporarily stored by the receiving TCP,

but TCP guarantees that no out-of-order

data are delivered to the process.

Note

TCP/IP Protocol Suite 129

TCP can be best modeled as a

Selective Repeat protocol.

Note

TCP/IP Protocol Suite 130

Figure 15.27 Simplified FSM for sender site

TCP/IP Protocol Suite 131

Figure 15.28 Simplified FSM for the receiver site

TCP/IP Protocol Suite 132

Figure 15.29 Normal operation

TCP/IP Protocol Suite 133

Figure 15.30 Lost segment

TCP/IP Protocol Suite 134

The receiver TCP delivers only ordered

data to the process.

Note

TCP/IP Protocol Suite 135

Figure 15.31 Fast retransmission

TCP/IP Protocol Suite 136

Figure 15.32 Lost acknowledgment

TCP/IP Protocol Suite 137

Figure 15.33 Lost acknowledgment corrected by resending a segment

TCP/IP Protocol Suite 138

Lost acknowledgments may create

deadlock if they are not

properly handled.

Note

TCP/IP Protocol Suite 139

15-9 CONGESTION CONTROL

We discussed congestion control in Chapter 13.

Congestion control in TCP is based on both open

loop and closed-loop mechanisms. TCP uses a

congestion window and a congestion policy that

avoid congestion and detect and alleviate

congestion after it has occurred.

TCP/IP Protocol Suite 140

Topics Discussed in the Section

✓ Congestion Window

✓ Congestion Policy

TCP/IP Protocol Suite 141

Figure 15.34 Slow start, exponential increase

TCP/IP Protocol Suite 142

In the slow start algorithm, the size of

the congestion window increases

exponentially until it reaches a

threshold.

Note

TCP/IP Protocol Suite 143

Figure 15.35 Congestion avoidance, additive increase

TCP/IP Protocol Suite 144

In the congestion avoidance algorithm

the size of the congestion window

increases additively until

congestion is detected.

Note

TCP/IP Protocol Suite 145

Figure 15.36 TCP Congestion policy summary

TCP/IP Protocol Suite 146

Figure 15.37 Congestion example

TCP/IP Protocol Suite 147

15-10 TCP TIMERS

To perform its operation smoothly, most TCP

implementations use at least four timers as shown

in Figure 15.38 (slide 83).

TCP/IP Protocol Suite 148

Topics Discussed in the Section

✓ Retransmission Timer

✓ Persistence Timer

✓ Keepalive Timer

✓ TIME-WAIT Timer

TCP/IP Protocol Suite 149

Figure 15.38 TCP timers

TCP/IP Protocol Suite 150

In TCP, there can be only one RTT

measurement in progress at any time.

Note

TCP/IP Protocol Suite 151

Let us give a hypothetical example. Figure 15.39 shows

part of a connection. The figure shows the connection

establishment and part of the data transfer phases.

1. When the SYN segment is sent, there is no value for

RTTM, RTTS, or RTTD. The value of RTO is set to 6.00

seconds. The following shows the value of these

variable at this moment:

Example 15.3

2. When the SYN+ACK segment arrives, RTTM is

measured and is equal to 1.5 seconds.

TCP/IP Protocol Suite 152

3. When the first data segment is sent, a new RTT

measurement starts. No RTT measurement starts for the

second data segment because a measurement is

already in progress. The arrival of the last ACK segment

is used to calculate the next value of RTTM. Although

the last ACK segment acknowledges both data

segments (cumulative), its arrival finalizes the value of

RTTM for the first segment. The values of these

variables are now as shown below.

Example 15.3 Continued

TCP/IP Protocol Suite 153

Figure 15.39 Example 15.3

TCP/IP Protocol Suite 154

TCP does not consider the RTT of a

retransmitted segment in its

calculation of a new RTO.

Note

TCP/IP Protocol Suite 155

Figure 15.40 is a continuation of the previous example.

There is retransmission and Karn’s algorithm is applied.

The first segment in the figure is sent, but lost. The RTO

timer expires after 4.74 seconds. The segment is

retransmitted and the timer is set to 9.48, twice the previous

value of RTO. This time an ACK is received before the time-

out. We wait until we send a new segment and receive the

ACK for it before recalculating the RTO (Karn’s algorithm).

Example 15.4

TCP/IP Protocol Suite 156

Figure 15.40 Example 15.4

TCP/IP Protocol Suite 157
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

User Datagram

Program

(UDP)

TCP/IP Protocol Suite 158

OBJECTIVES:
❑ To introduce UDP and show its relationship to other protocols in

the TCP/IP protocol suite.

❑ To explain the format of a UDP packet and discuss the use of

each field in the header.

❑ To discuss the services provided by the UDP such as process-to-

process delivery, multiplexing/demultiplexing, and queuing.

❑ To show how to calculate the optional checksum and the sender

the needs to add a pseudoheader to the packet when calculating

the checksum.

❑ To discuss how some application programs can benefit from the

simplicity of UDP.

❑ To briefly discuss the structure of the UDP package.

TCP/IP Protocol Suite 159

Chapter
Outline

14.1 Introduction

14.2 User Datagram

14.3 UDP Services

14.4 UDP Application

14.5 UDP Package

TCP/IP Protocol Suite 160

14-1 INTRODUCTION

Figure 14.1 shows the relationship of the User Datagram Protocol (UDP) to

the other protocols and layers of the TCP/IP protocol suite: UDP is located

between the application layer and the IP layer, and serves as the

intermediary between the application programs and the network operations.

TCP/IP Protocol Suite 161

Figure 14.1 Position of UDP in the TCP/IP protocol suite

TCP/IP Protocol Suite 162

14-2 USER DATAGRAM

UDP packets, called user datagrams, have a fixed-size header of 8 bytes.

Figure 14.2 shows the format of a user datagram.

TCP/IP Protocol Suite 163

Figure 14.2 User datagram format

TCP/IP Protocol Suite 164

The following is a dump of a UDP header in hexadecimal

format.

Example 14.1

a. What is the source port number?

b. What is the destination port number?

c. What is the total length of the user datagram?

d. What is the length of the data?

e. Is the packet directed from a client to a server or vice

versa?

f. What is the client process?

TCP/IP Protocol Suite 165

Example 14.1 Continued

Solution

a. The source port number is the first four hexadecimal

digits (CB84)16 or 52100.

b. The destination port number is the second four

hexadecimal digits (000D)16 or 13.

c. The third four hexadecimal digits (001C)16 define the

length of the whole UDP packet as 28 bytes.

d. The length of the data is the length of the whole packet

minus the length of the header, or 28 – 8 = 20 bytes.

e. Since the destination port number is 13 (well-known

port), the packet is from the client to the server.

f. The client process is the Daytime (see Table 14.1).

TCP/IP Protocol Suite 166

14-3 UDP Services

We discussed the general services provided by a transport layer protocol in

Chapter 13. In this section, we discuss what portions of those general

services are provided by UDP.

TCP/IP Protocol Suite 167

Topics Discussed in the Section

✓ Process-to-Process Communication

✓ Connectionless Service

✓ Flow Control

✓ Error Control

✓ Congestion Control

✓ Encapsulation and Decapsulation

✓ Queuing

✓Multiplexing and Demultiplexing

✓ Comparison between UDP and Generic Simple

Protocol

TCP/IP Protocol Suite 168

TCP/IP Protocol Suite 169

Figure 14.3 Pseudoheader for checksum calculation

TCP/IP Protocol Suite 170

Figure 14.4 shows the checksum calculation for a very

small user datagram with only 7 bytes of data. Because the

number of bytes of data is odd, padding is added for

checksum calculation. The pseudoheader as well as the

padding will be dropped when the user datagram is

delivered to IP (see Appendix F).

Example 14.2

TCP/IP Protocol Suite 171

Figure 14.4 Checksum calculation for a simple UDP user datagram

TCP/IP Protocol Suite 172

What value is sent for the checksum in one of the following

hypothetical situations?

a. The sender decides not to include the checksum.

b. The sender decides to include the checksum, but the

value of the sum is all 1s.

c. The sender decides to include the checksum, but the

value of the sum is all 0s.

Example 14.3

TCP/IP Protocol Suite 173

Solution

a. The value sent for the checksum field is all 0s to show

that the checksum is not calculated.

b. When the sender complements the sum, the result is all

0s; the sender complements the result again before

sending. The value sent for the checksum is all 1s. The

second complement operation is needed to avoid

confusion with the case in part a.

c. This situation never happens because it implies that the

value of every term included in the calculation of the

sum is all 0s, which is impossible; some fields in the

pseudoheader have nonzero values (see Appendix D).

Example 14.3 Continued

TCP/IP Protocol Suite 174

Figure 14.5 Encapsulation and decapsulation

TCP/IP Protocol Suite 175

Figure 14.6 Queues in UDP

TCP/IP Protocol Suite 176

Figure 14.7 Multiplexing and demultiplexing

TCP/IP Protocol Suite 177

UDP is an example of the

connectionless simple protocol we

discussed in Chapter 13 with the

exception of an optional checksum

added to packets for error detection.

Note

TCP/IP Protocol Suite 178

14-4 UDP APPLICATION

Although UDP meets almost none of the criteria we mentioned in Chapter 13

for a reliable transport-layer protocol, UDP is preferable for some

applications. The reason is that some services may have some side effects

that are either unacceptable or not preferable. An application designer needs

sometimes to compromise to get the optimum.

TCP/IP Protocol Suite 179

Topics Discussed in the Section

✓ UDP Features

✓ Typical Applications

TCP/IP Protocol Suite 180

A client-server application such as DNS (see Chapter 19)

uses the services of UDP because a client needs to send a

short request to a server and to receive a quick response

from it. The request and response can each fit in one user

datagram. Since only one message is exchanged in each

direction, the connectionless feature is not an issue; the

client or server does not worry that messages are delivered

out of order.

Example 14.4

TCP/IP Protocol Suite 181

A client-server application such as SMTP (see Chapter 23),

which is used in electronic mail, cannot use the services of

UDP because a user can send a long e-mail message,

which may include multimedia (images, audio, or video). If

the application uses UDP and the message does not fit in

one single user datagram, the message must be split by the

application into different user datagrams. Here the

connectionless service may create problems. The user

datagrams may arrive and be delivered to the receiver

application out of order. The receiver application may not

be able to reorder the pieces. This means the

connectionless service has a disadvantage for an

application program that sends long messages.

Example 14.5

TCP/IP Protocol Suite 182

Assume we are downloading a very large text file from the

Internet. We definitely need to use a transport layer that

provides reliable service. We don’t want part of the file to

be missing or corrupted when we open the file. The delay

created between the delivery of the parts are not an

overriding concern for us; we wait until the whole file is

composed before looking at it. In this case, UDP is not a

suitable transport layer.

Example 14.6

TCP/IP Protocol Suite 183

Assume we are watching a real-time stream video on our
computer. Such a program is considered a long file; it is
divided into many small parts and broadcast in real time.
The parts of the message are sent one after another. If the
transport layer is supposed to resend a corrupted or lost
frame, the synchronizing of the whole transmission may
be lost. The viewer suddenly sees a blank screen and
needs to wait until the second transmission arrives. This is
not tolerable. However, if each small part of the screen is
sent using one single user datagram, the receiving UDP
can easily ignore the corrupted or lost packet and deliver
the rest to the application program. That part of the screen
is blank for a very short period of the time, which most
viewers do not even notice. However, video cannot be
viewed out of order, so streaming audio, video, and voice
applications that run over UDP must reorder or drop
frames that are out of sequence.

Example 14.7

TCP/IP Protocol Suite 184

14-5 UDP PACKAGE

To show how UDP handles the sending and receiving of UDP packets, we

present a simple version of the UDP package.

We can say that the UDP package involves five components: a control-

block table, input queues, a control-block module, an input module, and an

output module.

