Introduction to the Transport
Layer

TCP/IP Protocol Suite
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

OBJECTIVES:

] To define process-to-process communication at the transport
layer and compare it with host-to-host communication at the
network layer.

J To discuss the addressing mechanism at the transport layer, to
discuss port numbers, and to define the range of port numbers
used for different purposes.

J To explain the packetizing issue at the transport layer:
encapsulation and decapsulation of messages.

 To discuss multiplexing (many-to-one) and demultiplexing (one-
to-many) services provided by the transport layer.

(1 To discuss flow control and how it can be achieved at the
transport layer.

TCP/IP Protocol Suite

OBJECTIVES (continued):

J To discuss error control and how It can be achieved at the
transport layer.

 To discuss congestion control and how it can be achieved at the
transport layer.

. To discuss the connectionless and connection-oriented services at
the transport layer and show their implementation using an
FSM.

] To discuss the behavior of four generic transport-layer protocols
and their applications: simple protocol, Stop-and-Wait protocol,
Go-Back-N protocol, and Selective-Repeat protocol.

(J To describe the idea of bidirectional communication at the
transport layer using the piggybacking method.

TCP/IP Protocol Suite 3

Chapter 13.1 Transport-Layer Services

Outline 13.2 Transport-Layer Protocols

TCP/IP Protocol Suite 4

13-1 TRANSPORT-LAYER SERVICES

As we discussed in Chapter 2, the transport layer
IS located between the network layer and the
application layer. The transport layer s
responsible for providing services to the
application layer; it receives services from the
network layer. In this section, we discuss the
services that can be provided by a transport
ayer, in the next section, we discuss the

orinciple beyond several transport layer
protocols.

TCP/IP Protocol Suite 5

Topics Discussed in the Sectio

v’ Process-to-Process Communic
v’ Addressing: Port Numbers

v’ Encapsulation and Decapsula
v’ Multiplexing and Demultiplex
v Flow Control

v’ Error Control

v’ Congestion Control

v’ Connectionless and Connectio

TCP/IP Protocol Suite

Figure 13.1 Network layer versus transport layer

Processes Processes

Il
Il
Il
Il

Internet

Domain of network-layer protocol

I
I
I
I
|
I
g

! Domain of transport-layer protocol

TCP/IP Protocol Suite

Figure 13.2 Port numbers

Daytime Daytime
client server

= A

sz 00— — © H

ransport Tr?nsport
ayer ayer

Il
Il

52,000
Data —=>

52,000

Data

TCP/IP Protocol Suite

Figure 13.3 IP addresses versus port numbers

Application

Transport

Destination port number
selects the process

i Destination IP address
selects the server

Data

TCP/IP Protocol Suite

Figure 13.4

ICANN ranges

Registered

0 1,023
I I

I |
t 1,024

Well-known

TCP/IP Protocol Suite

49,151

49,152 65,535

I_f_l

Dynamic or private

10

T
i

The well-known port numbers are

Note

less than 1,024.

TCP/IP Protocol Suite

Figure 13.5 Socket address

IP address

Socket address

TCP/IP Protocol Suite

200.23.56.8

69

200.23.56.8

69

Port number

12

Figure 13.6 Encapsulation and decapsulation

Apli)lication
ayer

Transport
layer

Client

Client
Process

Message

F Payroll
Packet

Header

a. Encapsulation

TCP/IP Protocol Suite

—

Logical channel

Server

Server .

process o
Message Ap]lell;gflon

|

F Payroll Transport
Packet layer

Header

b. Decapsulation

13

Figure 13.7 Multiplexing and demultiplexing

Ap]lJlication
ayer

P1

=

P3

Messages [ml] [mZ] [m

Transport
layer

TCP/IP Protocol Suite

Packet 3 |

Ap[l)lication
ayer
Demultiplexer
B JPacket | Transport
acke layer
B]Packet 3
P2
= Apﬁlication
== ayer
Message [mZ]
Demultiplexer
Transport
layer

B TPacket 2

14

Figure 13.8 Pushing or pulling

I Flow control I

Producer —

Delivery

Consumer

TCP/IP Protocol Suite

a. Pushing

.......... o
v Request '
Producer Consumer
Delivery
b. Pulling

15

Application
layer

Transport
layer

Figure 13.9 Flow control at the transport layer

Sender Recerver
‘ Producer | ‘ Consumer |
1 Flow . T
control v
Consumer Producer
Producer Consumer

Flow control

TCP/IP Protocol Suite

Application
layer

Transport
layer

16

Figure 13.10 Error control at the transport layer

Sender

Transport
layer

TCP/IP Protocol Suite

Receiver

Transport
layer

Error Control

17

Figure 13.11 Sliding window in circular format

seqNo of first
outstanding
packet

¢ No of Next
4 paccl:ket to send

a. Four packets have been sent

seqNo of first

v outstanding
packet

-

7 .
X, seqNo of Next
pa%ket to send

c. Seven packets have been sent
wimdow 1s full

TCP/IP Protocol Suite

seqNo of first

outstanding
packet
3
4
5 < seqNo of Next

packet to send

b. Five packets have been sent

seqNo ofdﬁrst
0 ./ outstandin
14 ,1—5—-“- 1 packet s

7 .
Y seqNo of Next
pa(cl:ket to send

d. Packet 0 has been acknowledged,

window slides

18

Figure 13.12 Sliding window in linear format

a. Four packets have been sent b. Five packets have been sent

c. Seven packets have been sent d. Packet 0 have been acknowledged
window 1is full and window slid

TCP/IP Protocol Suite 19

Figure 13.13 Connectionless service

S
e

{ Client Client transport Server transport
process layer layer process

n__ — B

Message 0

Message 2 1s
delivered out
of order

TCP/IP Protocol Suite 20

Figure 13.14 Connection-oriented service

TCP/IP Protocol Suite

‘Client Client transport Server transport Serverl
process layer layer process

‘Connection- :

:E open request :
QO P ———— > i :
g gl i : »: Connection- :
Q H H . 4
oG i ‘open request |
o= «— Ymmmmmmant
a i H
CE o |
U w H »
5] : —> !
! Message 0
o Packet 0 o Message O
; _ Message 1
: : is hold in :
: window
! Messages 1,i
; : ' _Z_d_eli_fe_rgd_i
LR 3 i s
g_g ,<f @ ! Connection-
= : ! i close request
CE H k 44----9--_.
SECARE s :
i] —>!
- v T -
Time Time Time Time

@ Client open-request packet
@ Acknowledgment for packet 1
® Server open-request packet
© Acknowledgment for packet 3

Data Transfer

@ Client close-request packet
@ Acknowledgment for packet 5

@ Scrver close-request packet
© Acknowledgment for packet 7

21

Figure 13.15

Note:

The colored
arrow shows the
starting state.

FSM for

connection-oriented
transport layer

FSM for
connectionless
transport layer

Connectionless and connection-oriented services as FSMs

—>| Established '

Both ends are always
in the established state.

/ A connection-open
request acceoted
from application.

Send an open request

packet to the other end.

| Open-

r

Wait-1 l

—

\

A close-request
packet arrived from
the other end.

Send an ACK packet.

An ACK received
from the other end.

Do nothing.

~

y

Closed-Wait-11

An ACK received
from the other end.

Do nothing.

[Open-wait- I]

An open-request
packet arrived from
the other end.

Send an ACK packet.

TCP/IP Protocol Suite

—)[Established '

Data Transfer occurs
when both ends are n
established state

Close-Wait-1

A connection-close
request accepted
from application.

Send a close request
packet to the other end.

/

22

13-2 TRANSPORT-LAYER PROTOCOLS

We can create a transport-layer protocol by
combining a set of services described in the
previous sections. To better understand the
behavior of these protocols, we start with the
simplest one and gradually add more complexity.
The TCP/IP protocol uses a transport layer
protocol that is either a modification or a
combination of some of these protocols.

TCP/IP Protocol Suite 23

Topics Discussed in the Sectic

v’ Simple Protocol

v’ Stop-and-Wait Protocol

v’ Go-Back-N Protocol

v’ Selective-Repeat Protocol

v’ Bidirectional Protocols: Pigg

TCP/IP Protocol Suite

Figure 13.16 Simple protocol

Sender Receiver
o Packet .
Application | EE— —— Application
Transport Transport

Logical channel

TCP/IP Protocol Suite 25

Figure 13.17 FSMs for simple protocol

-

Request came from application.
Make a packet and send 1it.

~

J

Sender

TCP/IP Protocol Suite

/

Packet arrived.

Deliver 1t to process.

Recerver

26

|: o

Note

The simple protocol is a connectionless

protocol that provides neither
flow nor error control.

TCP/IP Protocol Suite

Example 13.3

Figure 13.18 shows an example of communication using
this protocol. It is very simple. The sender sends packets
one after another without even thinking about the receiver.

TCP/IP Protocol Suite 28

Figure 13.18 Example 13.3

Sender Recerver Events:
Transport Transport Req: Request came from process
layer layer pArr: Packet arrived
Req :
-f{ g %: pPArI
c - - .
- T 'q'} :% : IT
| . = >
\ 4 . \ 4
Time * Time

TCP/IP Protocol Suite 29

Figure 13.19 Stop-and-wait protocol

Sender Packet ACK Receiver
Application | gy seqNo j E checksum a.ckNon checksum | Application
H A
Transport Transport
. b —

S

:'_'_‘_‘ri‘,::; e oo @ Timer

Send window

TCP/IP Protocol Suite

Logical channels

R Next packet

to receive
r=== ===

[BN BN) 1 1 @ &0
| = = = P |

Receive window

30

‘ Note I

In Stop-and-Wait protocol, flow
control is achieved by forcing the
sender to wait for an acknowledgment,

and error control is achieved by
discarding corrupted packets and letting
the sender resend unacknowledged
packets when the timer expires.

TCP/IP Protocol Suite 31

‘ Note I

In the Stop-and-Wait protocol, we can
use a 1-bit field to number the packets.

The sequence numbers are based on

modulo-2 arithmetic.

TCP/IP Protocol Suite

32

‘ Note I

In the Stop-and-Wait protocol, the
acknowledgment number always

announces in modulo-2 arithmetic the
sequence number of the next packet
expected.

TCP/IP Protocol Suite

33

‘ Note I

All calculation in the Stop-and-Wait

protocol is in modulo 2.

TCP/IP Protocol Suite

34

Figure 13.20 FSMs for stop-and-wait protocol

Sender

/ Request came from application.

Start the timer.

Make a packet with seqNo = S, save a copy, and send it.

Time-out.

Ready '

Resend the packet in the window.
Restart the timer.

[Blocking ' ‘
Corrupted ACK or error-free ACK

with ackNo not related to the only

Error-free ACK with ackNo =S + 1 arrived.

outstanding packet arrived.

Discard the ACK.
Slide the gend window forward (S =S + 1). Note:
Stop the timer. All arithmetic equations
_ are in modulo 2. -/
Receiver
Corrupted packet arrived. Error-free packet with seqNo =R arrived. \
Discard the packet. — Deliver the message to application.

.

Shide the recerve window forward (R =R +1).

Send ACK with ackNo = R.

Error-free packet with seqNo ! = R arrived. Note:
Discard the packet (it 1s duplicate). All gnthme‘uc equations
Send ACK with ackNo =R are i modulo 2.)

TCP/IP Protocol Suite

35

Example 13.4

Figure 13.21 shows an example of Stop-and-Wait protocol.
Packet O is sent and acknowledged. Packet 1 is lost and
resent after the time-out. The resent packet 1 s
acknowledged and the timer stops. Packet 0 is sent and
acknowledged, but the acknowledgment is lost. The sender
has no idea if the packet or the acknowledgment is lost, so
after the time-out, it resends packet O, which s
acknowledged.

TCP/IP Protocol Suite 36

Figure 13.21 Example 13.4

Req: Request from process
Events: | pArr: Packet arrival

aArr: ACK arrival Sender Receiver
T-Out: Time our occurs
Transport Transport
S layer layer
Re il niall s Bl
Start BN @110:1:0:1: | Lacket 0 oy N
—————————— . | - =qm===F=
o aAm! ACK 1L t=== >0 L[OITi0f]
sop (7) 10 (L] 07 110]T 1= e i
S : b |
- - TTATTrC I
sun @ % O =l |
: Lost :
S ! |
' R
Time-out; restart _T_'E)PE :-(-)-(5?11:0?1-1: : Packet 1 (resent) : Arr I
Y- -t --------- | ‘-}I p ll l--l-- === crTAa
S | ACKO __1===>:0:1[0]1:0:1;
S |
Stop 1041[0] 11071 %=~ - == :
|
S ! I
Req .oome oo Packerg | R
Sart @ ---» Ofoliloi > pAr, b
| ACK 1 1==-»10i1i0][1]0!1;
b T
|
T-Out S : Pack Lost :
R, -Vu N E‘ A acket 0 (resent I
Time-out; restart . """ > O L0 :) — PAIT Packet 0
S | ACK 1 | =~ =% discarded
e ——_- a ;
Stop @ :9_:-1_!- O _:-1-:‘_ Sand I i (a duplicate)
! |
Time Time

TCP/IP Protocol Suite

37

Example 13.5

Assume that, in a Stop-and-Wait system, the bandwidth of
the line is 1 Mbps, and 1 bit takes 20 milliseconds to make
a round trip. What is the bandwidth-delay product? If the
system data packets are 1,000 bits in length, what is the
utilization percentage of the link?

Solution

The bandwidth-delay product is (1 x 10%) x (20 x 107°) =
20,000 bits. The system can send 20,000 bits during the
time it takes for the data to go from the sender to the
receiver and the acknowledgment to come back. However,
the system sends only 1,000 bits. We can say that the link
utilization is only 1,000/20,000, or 5 percent. For this
reason, for a link with a high bandwidth or long delay, the
use of Stop-and-Wait wastes the capacity of the link.

TCP/IP Protocol Suite 38

Example 13.6

What is the utilization percentage of the link in Example
13.5 if we have a protocol that can send up to 15 packets
before stopping and worrying about the
acknowledgments?

Solution

The bandwidth-delay product is still 20,000 bits. The
system can send up to 15 packets or 15,000 bits during a
round trip. This means the utilization is 15,000/20,000, or
/5 percent. Of course, If there are damaged packets, the
utilization percentage is much less because packets have
to be resent.

TCP/IP Protocol Suite 39

Figure 13.22 Go-Back-N protocol

Application

Transport

Packet ACK

Receiver

a,ckNo5 E checksum ackNo checksum

Application

<«

Logical channels

S, Next -
SI outstanding f to send @ Ttmer

—-—— = d

TCP/IP Protocol Suite

Send window

Transport

Next
ln to receive

Receive window

40

‘ Note I

In the Go-Back-N Protocol, the sequence
numbers are modulo 2™, where m is the

size of the sequence number

field In bits.

TCP/IP Protocol Suite

41

‘ Note I

In the Go-Back-N protocol, the
acknowledgment number is

cumulative and defines the sequence
number of the next packet
expected to arrive.

TCP/IP Protocol Suite

42

Figure 13.23 Send window for Go-Back-N

. First . Next
S¢ outstanding Sh to send

eoe [_6_.[_'?_ 4 5 6 __7_[_(2_:0..

Sent, Outstanding Can be sent Cannot be
acknowledged, (sent, but not when accepted | . accepted
and purged acknowledged) | from process | from process

L
P

.
-

Ssize = Send window size

gl

F 8

TCP/IP Protocol Suite 43

‘ Note I

The send window Is an abstract concept
defining an imaginary box of maximum

size = 2™ = 1 with three variables:

S, S, and S

size*

TCP/IP Protocol Suite

44

‘ Note I

The send window can slide one or
more slots when an error-free ACK

with ackNo between S; and S,
(in modular arithmetic) arrives.

TCP/IP Protocol Suite

45

Figure 13.24 Sliding the send window

First S S Next
outstanding °f “n to send

Y \

a. Window before sliding

Fust o . Next
outstanding ~f Sy to send

LENEEAERENEN IS IEEN N ENEE EREE

b. Window after sliding (an ACK with ackNo = 6 has arrived)

TCP/IP Protocol Suite

46

Figure 13.25 Receive window for Go-Back-N

reE - Tr- oo Tr- o r- o T e s o

...|0|1|2[3r4:

N S U

Already received

and acknowledged

R Next

Y

4l Sl
! ”~

" expected

T"77770 1 112 1eee

Cannot be
received

TCP/IP Protocol Suite

L4 -

Rgize =1

47

The recelve window IS an abstract
concept defining an imaginary
box of size 1 with

one single variable R,..

he window slides when a correct
packet has arrived; sliding
occurs one slot at a time.

TCP/IP Protocol Suite

Figure 13.26 FSMs for Go-Back-N

Sender

/Note:
All arithmetic equations

Request from process came.
: m
are in modulo 2.

Make a packet (seqNo = Sp) .
Store a copy and send the packet.

Time-out.

Resend all outstanding
Window full packets.
(Sp = St +S5ize)?| Restart the timer.

| Blocking

A corrupted ACK or an '
error-free ACK with ackNo
outside window arrived.

Error free ACK with ackNo between
S¢ and S;, arrived.

Start the timer if it is not running.
Time-out. Sp=Sp* L.
Resend all outstanding & Tirue]
Iliizlt{aert:‘the timer. [false] A 4
: Ly Y
Ready
Y

Slide window (Sg = ackNo).
If ackNo equals S;,, stop the timer.
\ If ackNo < S;, restart the timer.

Discard it.

A corrupted ACK or an
error-free ACK with ackNo
outside window arrived.

Discard it.

Receiver

™\

/N ote:

are in modulo 2™.

All arithmetic equations

Error-free packet with

seqNo =R, arrived.

Deliver message.

TCP/IP Protocol Suite

Corrupted packet arrived.

Discard packet.

.

Slide window (R;; =R, + 1).
Send ACK (ackNo = R;,).

Ready

N

Error-free packet

with seqNo ! ¥ R, arrived.

Discard packet.

Send an ACK (ackNo = Ry)).

49

Figure 13.27 Send window size for Go-Back-N

Sender Receiver
S¢S
Start " Packet g R,
e —— ———
® 2 INEE
ACKL | 77—
1 Packet 1 . _
(E B — 0112] 31
AC T T
: Packet2? | ___ ___
0]1(2]3, p— 001 _}_2_
ACK3
0[1[2[3] | mmpicket 0 Correctly
Timeﬁ;; T | Resent 7|77 discarded
restart Y *)

a. Send window of size < 2™

TCP/IP Protocol Suite

Start
®

Sender

St S,

0]1[2[3]0!
o[1]2[3]0;

o01]2[3] 0;

01]2]3]0!

® Plf2]3]0.

Time-out;
restart

A

Receiver
R,

Packet (_ _' .
2 10 1(2)3]0!
ACK1 __ o
Packet | o .
> :0'1!3'0'
ACK2 - "I"l
Packet 2 e _
? :0:1:2 01
ACK3 | =7 7 T

Packet 3 o

10111243

|

ACKO
Packet 0

Resent

- - -

Erroneously

accepted and

delivered as
new data

b. Send window of size = 2™

50

‘ Note I

In the Go-Back-N protocol, the size of
the send window must be less than 2m:;

the size of the recelive window

Is always 1.

TCP/IP Protocol Suite

51

Example 13.7

Figure 13.28 shows an example of Go-Back-N. This is an
example of a case where the forward channel is reliable,
but the reverse is not. No data packets are lost, but some
ACKs are delayed and one is lost. The example also shows
how cumulative acknowledgments can help If
acknowledgments are delayed or lost.

TCP/IP Protocol Suite 52

Figure 13.28 Example 13.7

Start

Initial

timer Sf‘| i Sy
0

1

S;~ 19,
Req ITELY
-==> [0]1[2[3]4[5]6]7)0}1}2]

2|3

41516

7101112,

Sender

eq S,)
eq __ e -
-==> 10]1[2{3]4[5]6]7]0i1}2;

[

© 10]1(2(3[4[5/6]7]0}1}:
Sf Sn

Req - L1)it

@ ---> of1]2[3]4]5]6]7]0}1}2!

Transport
layer
|

S S
Req _f_—l [™ -
-==>» 10[1]2]3]4]5[6[7]0}1}2]

S S
_____f_l [o _ aArr
Restart [01,2]3]4|5(6/7/0[1]2 €~~~
Se_ S
e

O 0111213]4]5]6]7]0]1]2

Stop

timer

TCP/IP Protocol Suite

Packet

Receiver

Tr?nsport
{_Iayer Ry mnitial

11213141516,7101112]
R,

pArT

| > === >[0]1121314151617,011;2:
—— ___ aArr /
-01 1-: 2-:4. - ==

R,
2[314151617:0,112)

R,
PAYY e o _____
-==»10111213]4151617,0,112;

Events:

Req: Request from process
pArr: Packet arrival
aArr: ACK arrival

53

Example 13.8

Figure 13.29 shows what happens when a packet is lost.
Packets 0, 1, 2, and 3 are sent. However, packet 1 is lost.
The receiver receives packets 2 and 3, but they are
discarded because they are received out of order (packet 1
IS expected). When the receiver receives packets 2 and 3, it
sends ACK1 to show that it expects to receive packet 1.
However, these ACKs are not useful for the sender because
the ackNo is equal S;, not greater that S; . So the sender
discards them. When the time-out occurs, the sender
resends packets 1, 2, and 3, which are acknowledged..

TCP/IP Protocol Suite 54

Figure 13.29 Example 13.8

Sender

Transport
layer

Receiver

Transport
ayer

S¢S Initial
S rNPRET
liltrtx‘?r . mll 617,011,2,
St

n Initial
s

R

n

I

|

|

- I

Re1. e :
--> QREEBleonz ——o

I

I

I

I

1

1

1

I

:

1
| pArr __ [,
— 5 e

. aArr
ACK discarded <€ ==~

. aArr
ACK discarded <€=-=--

Packet discarded

Ser S
o n - -~ aArr /
Stop (¥ 10[11213[4[5[6]710}1}2i«---
St Sa .
Start Ry R 31al5 (617 002!
R % =
R 117 B E G
S Sa
) 111l N G A

. Packet discarded

Rl‘l
pArr ___

2 Sf Sn
@ M GiRRLA el ol
Sf Sn
- o[1]2[3]4]5T6[7101112;

S R

R,

[Sy

Sf Sn
->0[i[a[3]4]s]6[7]01}Z;

| BATE oo ol
Tee>101112[31415163 7

Rn

Sf 5n
Restart 071 [2]8]4]5]6]7:01 117 QA
—— i

n

Restart G oIp
Stop T st_ iy
timer 0115233 4]5]6]7]0]1]2] «---

Time

TCP/IP Protocol Suite

— 1% s

Events:

Req: Request from process
pArr: Packet arrival

aArr: ACK arrival
time-out: timer expiration

55

Figure 13.30 Outline of Selective-Repeat
Sender Packet ACK Receiver
Application I seqNoj E checksum a,ckNon checksum E— Application
O seo B —
Transport Transport
- cee C —

Logical channels

Sent, but not acknowledged

. Timer

Acknowledged out of order

Packet received out of order

S

n

Next

First 3
St to send

outstanding |

Send window

TCP/IP Protocol Suite

R, Next
to receive

Receive window

56

Figure 13.31 Send window for Selective-Repeat protocol

First outstanding S¢ Sy Next to send

13S0l 2 030415 1607489 10011 112; Outstanding packet,
not acknowledged

Packets already |Outstanding packets,| Packets that can Packets that Packet acknowledged

acknowledged | some acknowledged be sent cannot be sent out of order

L =1t

S — 2111*].

size

TCP/IP Protocol Suite 57

Figure 13.32 Receive window for Selective-Repeat protocol

R Receive window,
" next packet expected

=== == __-T---I

lll12il%'l4 15

—_——— —_——— —_——— —_——— —_———

Packets that can be received
Packet already and stored for later delivery. Packet that
received Shaded boxes, already received cannot be recetved
_ Aam—1
- Rsize =2 .

TCP/IP Protocol Suite

Packet Received

out of order

58

‘ Note I

In the Selective-Repeat protocol, an
acknowledgment number defines

the sequence number of the

error-free packet received.

TCP/IP Protocol Suite

59

Example 13.9

Assume a sender sends 6 packets: packets O, 1, 2, 3, 4, and
5. The sender receives an ACK with ackNo = 3. What is the
Interpretation if the system is using GBN or SR?

Solution

If the system is using GBN, it means that packets 0, 1, and
2 have been received uncorrupted and the receiver is
expecting packet 3. If the system is using SR, it means that
packet 3 has been received uncorrupted; the ACK does not
say anything about other packets.

TCP/IP Protocol Suite 60

Figure 13.33

FSMs for SR protocol

Sender

/

Time-out.

Resend all unacked
packets in window.
Reset the timer.

Request came from process.
Make a packet (seqNo = S).
Store a copy and send the packet.

Start a timer for this packet.
SetS, =S+ 1.

Window full
(Sp,=S¢t+S

. ?
S1Z¢)?

»

[true]
[false]

Y

g
% Rcady P [true]

Blocking

M

Window slides? H -

T . arrived.
A corrupted ACK or H !l: Discard it
an ACK f‘b‘)“t a non- i 4= An error-free ACK arrived that :
outstanding packet acknowledges one of the outstanding
arrlved. : packets.
LI Mark the corresponding packet.
If ackNo = S¢; slide the window over Note:

all consecutive acknowledged packets.
If there are outstanding packets,
restart the timer. Else, stop the

timer.

All arithmetic equations
are in modulo 2™

Time-out.

Resend all unacked
packets in window.
Reset the timer.

A corrupted ACK or
an ACK about a non-
outstanding packet

/

TCP/IP Protocol Suite

Receiver

/

Error-free packet with seqNo
inside window arrived.

All arithmetic equations

If duplicate, discard; else,

store the packet.
Send an ACK with ackNo = seqNo.
If seqNo = Ry, deliver the packet and

all consecutive previously arrived
and stored packets to application,
and slide window.

are in modulo 2™,

Corrupted packet arrived.

Discard the packet.

o

Ready

Error-free packet with seqNo
outside window boundaries arrived.

Discard the packet.

Note: \

Send an ACK with ackNo =R,.)

61

Example 13.10

This example is similar to Example 3.8 (Figure 13.29) in
which packet 1 is lost. We show how Selective-Repeat
behaves in this case. Figure 13.34 shows the situation. At
the sender, packet 0 is transmitted and acknowledged.
Packet 1 is lost. Packets 2 and 3 arrive out of order and are
acknowledged. When the timer times out, packet 1 (the
only unacknowledged packet) Is resent and is
acknowledged. The send window then slides.

TCP/IP Protocol Suite 62

Figure 13.34 Example 13.10

Events:

Req: Request from process
pArr: Packet arrival
aArr: ACK arrival

T-Out: time-out

S¢

S¢S, Initial .
[1
0[112[31415,6,7:0; |

:

1

Sender

Transport
layer
|

Receiver

Transport
layer

R,

R,
pArT _

S
R -
Start --e.q> 4:5:6:7:0: h Packet ()
o s I

S¢
]
st @ -2 G A]516710; e

I

I
S S !
of n_______aArr:
1Y 51617,0 ==~
S, S, !
- e e e o]

R SIOITI0) et 3
?f_ S_n______ aArr ! A
0 516,7,0---

S S

I
Sf Sn E Lost
Ry R[4 506.710;
ACK 2

3

»

|
|
|
|
|
|
|
|
|
|

f n
Restart @) 10U, RBIAIST6 0] beiicket | Gesont

TCP/IP Protocol Suite

SfISH %'
e e _ q AT | !
stop (1) 10111213]4]5]6]7] 0% ---! :

4
Time

—

:

Initial

O[1[2]3/415]617!

S N

T
I
I
I
I
I
I
:
SeqrS ! CKO — -
. _f_ n o ___ aArr %:
top 10[1]2]3141516}710--~ .
- e I
S, ! !
I
I
I
I
I
I
I

Data delivered
to application

N R,

T - —_———

e 2 BRI
N R,

5 BRI

R,
pPArr_ __ __ __
---->L0_L1|_!_2_[_3 E

E Data delivered

~ot licati
o application

63

Figure 13.35 Selective-Repeat window size

Sender Receiver
Start St _Sn X ' R,
2:3: —tacket 0,
e IEIES
0[1]2]3] smbackett 1
WCK 1 1011
2133 %: N Correctly
Time-out; v v discarded
restart

a. Send and receive windows

of size =2m-1

TCP/IP Protocol Suite

Sender Recerver
Start Of noo . R,
@ ([QU25]0 mLackero .
N EACKOT—-: 0_:_1:__:
0]1]2]370! lmmbacket 1 1 ___ .
ACK | g—! 011]2]3]0]1,2;
1213707 'maPacket2 ' .
Q210 == ! T
ACK 2 -
© [fipso % Accamted
Time-out; : i stored as
restart Y Y new data

b. Send and receive windows

of size >2m-1

T
i

In Selective-Repeat, the size of the

Note

sender and recelver window

can be at most one-half of 2m.

TCP/IP Protocol Suite

Figure 13.36 Design of piggybacking for Go-Back-N

Client Server
— ackNo _
Application Application
—/— # Packet I
: e seqNo checksum ——
Co——— CEme—— .- Emee D Comee—
e < [ccc [< e S

Transport Logical channels Transport

Client recerve window

S¢ First S, Next R, Next
l outstanding l to send l to receive
® o 0 I--- ---: o0 0 ...l___ ___:...
l — — = _— = | _—_—
Client send window Server receive window
Windows for communication from client to server
R, Next St First Sn Next
l to receive l outstanding ,l, to send
oocl___ ___:ccc o 00 ;-___ ___: [)

Server send window

Windows for communication from server to client

TCP/IP Protocol Suite

66

Transmission
Control
Protocol

(TCP)

TCP/IP Protocol Suite
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

OBJECTIVES:

J To introduce TCP as a protocol that provides reliable stream
delivery service.

] To define TCP features and compare them with UDP features.
] To define the format of a TCP segment and its fields.

 To show how TCP provides a connection-oriented service, and
show the segments exchanged during connection establishment
and connection termination phases.

] To discuss the state transition diagram for TCP and discuss some
scenarios.

1 To introduce windows in TCP that are used for flow and error
control.

TCP/IP Protocol Suite 68

OBJECTIVES (continued):

 To discuss how TCP implements flow control in which the
receive window controls the size of the send window.

 To discuss error control and FSMs used by TCP during the data
transmission phase.

1 To discuss how TCP controls the congestion in the network using
different strategies.

] To list and explain the purpose of each timer in TCP.

1 To discuss options in TCP and show how TCP can provide
selective acknowledgment using the SACK option.

1 To give a layout and a simplified pseudocode for the TCP
package.

TCP/IP Protocol Suite 69

Chapter
Outline

TCP/IP Protocol Suite

15.1 TCP Services

15.2 TCP Features
15.3 Segment

15.4 A TCP Connection
15.5 State Transition Diagram
15.6 Windows in TCP
15.7 Flow Control

15.8 Error Control

15.9 Congestion Control
15.10 TCP Timers

15.11 Options

15.12 TCP Package

70

15-1 TCP SERVICES

Figure 15.1 shows the relationship of TCP to the
other protocols in the TCP/IP protocol suite.
TCP lies between the application layer and the
network layer, and serves as the intermediary
between the application programs and the
network operations.

TCP/IP Protocol Suite 71

Topics Discussed in the Section

v’ Process-to-Process Communication
v’ Stream Delivery Service

v’ Full-Duplex Communication

v Multiplexing and Demultiplexing
v’ Connection-Oriented Service

v’ Reliable Service

TCP/IP Protocol Suite

72

Figure 15.1 TCP/IP protocol suite

Apﬁ)lication
ayer

Transport
layer

Network
layer

Data link
layer | | Underlying LAN or WAN
Physical technology
layer

TCP/IP Protocol Suite 73

Table 15.1 Well-known Ports used by TCP

Port Protocol Description
7 Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received

11 Users Active users

13 Daytime Returns the date and the time

17 Quote Returns a quote of the day

19 Chargen Returns a string of characters

20 and 21 FTP File Transfer Protocol (Data and Control)

23 TELNET Terminal Network

25 SMTP Simple Mail Transfer Protocol

53 DNS Domain Name Server

67 BOOTP Bootstrap Protocol

79 Finger Finger

80 HTTP Hypertext Transfer Protocol

TCP/IP Protocol Suite

74

Figure 15.2 Stream delivery

Sending
process

Iy

TCP I

Recelving

PTOCESS

A

Stream of bytes

TCP/IP Protocol Suite

TCP

75

Figure 15.3 Sending and receiving buffers

Sending
process

Receirving
process

Il
Iy

Next byte

Next byte
to read

to write

Not read

Stream of bytes

Next byte

to send

Next byte
to receive

A4

TCP/IP Protocol Suite

Figure 15.4 TCP segments

Sending
process

Il

Next byte
to write
5
." Not sent
Next byte .
to send

TCP/IP Protocol Suite

Segment N

H I

Receiving
process

Il

Next byte
to read

Segment 1

to receive

77

15-2 TCP FEATURES

To provide the services mentioned Iin the
previous section, TCP has several features that
are Dbriefly summarized in this section and
discussed later in detall.

TCP/IP Protocol Suite 78

Topics Discussed in the Section

v Numbering System
v’ Flow Control
v’ Error Control
v’ Congestion Control

TCP/IP Protocol Suite

79

‘ Note I

The bytes of data being transferred in
each connection are numbered by TCP.

The numbering starts with an arbitrarily
generated number.

TCP/IP Protocol Suite

80

Example 15.1

Suppose a TCP connection is transferring a file of 5,000
bytes. The first byte is numbered 10,001. What are the
sequence numbers for each segment if data are sent in five
segments, each carrying 1,000 bytes?

Solution
The following shows the sequence number for each
segment:

Segment 1 — Sequence Number: 10,001 Range: 10,001 to 11,000
Segment 2 — Sequence Number: 11,001 Range: 11,001 to 12,000
Segment 3 — Sequence Number: 12,001 Range: 12,001 to 13,000
Segment 4 — Sequence Number: 13,001 Range: 13,001 to 14,000
Segment 5 — Sequence Number: 14,001 Range: 14,001 to 15,000

TCP/IP Protocol Suite 81

‘ Note I

The value in the sequence number
field of a segment defines the number

assigned to the first data byte

contained in that segment.

TCP/IP Protocol Suite

82

‘ Note I

The value of the acknowledgment field
In a segment defines the number of the
next byte a party expects to receive.

The acknowledgment number Is

cumulative.

TCP/IP Protocol Suite

83

15-3 SEGMENT

Before discussing TCP in more detail, let us
discuss the TCP packets themselves. A packet in
TCP is called a segment.

TCP/IP Protocol Suite 84

Topics Discussed in the Section

v’ Format
v’ Encapsulation

TCP/IP Protocol Suite

85

Figure 15.5 TCP segment format

|, 20 to 60 bytes
) >
4—’ Header Data
a. Segment
1 16 31
Source port address Destination port address
16 bits 16 bits
Sequence number
32 bits
Acknowledgment number
32 bits
HLEN Reserved [ARPSRERIEARS Window size
4 bits 6bits pARARAEIRIRS 16 bits
Checksum Urgent pointer
16 bits 16 bits
Options and padding

b. Header
TCP/IP Protocol Suite 86

Figure 15.6 Control field

URG: Urgent pointer 1s valid RST: Reset the connection
ACK: Acknowledgment 1s valid SYN: Synchronize sequence numbers
PSH: Request for push FIN: Terminate the connection

URG PSH RST FIN

6 bits

TCP/IP Protocol Suite 87

Figure 15.7 Pseudoheader added to the TCP segment

Pseudoheader

32-bit source IP address

32-bit destination IP address

All Os 8-bit protocol

16-bit TCP total length

——

Source port number

Destination port number

Sequence number

Header

Acknowledgment number

HLEN | Reserved

Control

Window size

Checksum

TCP/IP Protocol Suite

Urgent pointer

Data and option

(Padding must be added to make
the data a multiple of 16 bits)

88

‘ Note I

The use of the checksum in TCP Is

mandatory.

TCP/IP Protocol Suite

89

Figure 15.8 Encapsulation

TCP/IP Protocol Suite

TCP
header

Application-layer data

IP
header

TCP payload

I

IP payload

‘Data-link layer payload

90

15-4 ATCP CONNECTION

TCP 1s connection-oriented. It establishes a
virtual path between the source and destination.
All of the segments belonging to a message are
then sent over this virtual path. You may wonder
how TCP, which uses the services of IP, a
connectionless protocol, can be connection-
oriented. The point is that a TCP connection iIs
virtual, not physical. TCP operates at a higher
level. TCP uses the services of IP to deliver
Individual segments to the receiver, but it
controls the connection itself. If a segment is lost
or corrupted, it is retransmitted.

TCP/IP Protocol Suite 91

Topics Discussed in the Section

v’ Connection Establishment
v’ Data Transfer

v’ Connection Termination
v’ Connection Reset

TCP/IP Protocol Suite

92

| Figure 15.9 Connection establishment using three-way handshake
§ >

e |
Client Client transport Server transport Server |
process layer A: ACK flag layer process

=] B 1
: : i Passive |
: open
DEERLTEE
;Connection
opene]
--------- >E
Time Time

TCP/IP Protocol Suite

93

|: o

Note

A SYN segment cannot carry data, but it

consumes one sequence number.

TCP/IP Protocol Suite

Note

T
i

A SYN + ACK segment cannot carry

data, but does consume one

sequence number.

TCP/IP Protocol Suite

|: o

Note

An ACK segment, if carrying no data,

consumes no sequence number.

TCP/IP Protocol Suite

Figure 15.10 Data Transfer

process

Client

Server transport Server

process

TCP/IP Protocol Suite

Time

Client transport
layer layer
P: PSH flag A: ACK flag
Connection Termination

S 8001

bytes: 15001 17000

- seq: 10000

rwnd: 10000

Connection Establishment

I

Time Time

Time

97

Figure 15.11 Connection termination using three-way handshake

2L

Y Client Client transport Server transport Server

process ayer A: ACK flag F: FIN flag layer process

Passive
close
: Connection
closed
i Connection |
closed i
¥ ¥ v N
Time Time Time Time

TCP/IP Protocol Suite

|: o

Note

The FIN segment consumes one

sequence number If It does
not carry data.

TCP/IP Protocol Suite

Note

|: o

The FIN + ACK segment consumes one

sequence number If It does
not carry data.

TCP/IP Protocol Suite 100

Figure 15.12 Half-Close

=

Client Client transport Server transport Server
process layer A: ACK flag F: FIN flag layer process
= 1] | =

Active | E :
- close
: Connection

closed

<= Data segments from server to client |
Acknowledgment from client to server)
Passive
v v v ¥
Time Time Time Time

TCP/IP Protocol Suite

101

15-5 STATE TRANSITION DIAGRAM

To keep track of all the different events
happening during connection establishment,
connection termination, and data transfer, TCP

IS specified as the finite state machine shown in
Figure 15.13.

TCP/IP Protocol Suite 102

Topics Discussed in the Section

v’ Scenarios

TCP/IP Protocol Suite 103

Figure 15.13 State transition diagram

—> (Client transition

------- > Server transition
=3 Client or server transition v
 CLOSED Bkl ket 1
: A | _ :
Passive open / — : Active open / SYN :
|
"' RST/— Close / — :
SYN/SYN +ACK |
e —————————— - LISTEN :
: RST /- A Send / SYN I
B SYN /SYN + ACK Y Y |
+
< BST (syNrevD)< . (SYN-SENT) |
J Simultaneous open \ Close or|
: ACK /- ' ACSIF/\IA—EK time-out |
Close / FIN R)_(ESTABLISHED » or RST/ —:
|
Close / FIN Data transfer | FIN / ACK |
1 |
= FIN / ACK I |
FIN- - CLOSE- '
> CLOSING
[WAIT-1' } gimultaneous L WAIT :
close I
Close / | I
ACK /- FIN + ACK/ACK ACK /- HIN :
Three-wa I
Handshak%: IA%SI(T '
|
\ 4
FIN-) FIN/ACK (TpvME. | __ACK/- |
WAIT-2 1 WAIT
Time-out (2MSL)

TCP/IP Protocol Suite 104

‘ Note I

The state marked as ESTBLISHED
In the FSM Is In fact two different

sets of states that the client
and server undergo to transfer data.

TCP/IP Protocol Suite 105

Table 15.2 States for TCP

State Description
CLOSED No connection exists
LISTEN Passive open received; waiting for SYN
SYN-SENT SYN sent; waiting for ACK
SYN-RCVD SYN+ACK sent; waiting for ACK
ESTABLISHED Connection established; data transfer in progress
FIN-WAIT-1 First FIN sent; waiting for ACK
FIN-WAIT-2 ACK to first FIN received; waiting for second FIN
CLOSE-WAIT First FIN received, ACK sent; waiting for application to close
TIME-WAIT Second FIN received, ACK sent; waiting for 2MSL time-out
LAST-ACK Second FIN sent; waiting for ACK
CLOSING Both sides decided to close simultaneously

TCP/IP Protocol Suite

106

Figure 15.14 Transition diagram for connection and half-close termination

Time-out

CLOSED

TIVTAWALT EPassive open / — ACK /-
Active open / SYN '
FIN/ACK LISTEN LAST-ACK

FIN-WAIT-2

' SYN/SYN + ACK Close / FIN 1

SYN-RCVD CLOSE- WAIT

FIN-WAIT-1 SYN +ACK/ACK

l-

" ACK /—
close / FIN ™ F o TABLISHED b omcnmmn »(ESTABLISHED 'F-Hf [ACK,
Client States Server States

TCP/IP Protocol Suite 107

Figure 15.15 Time-line diagram for Figure 15.14

Vgllient Server i
= Transport

Transport -
Process i aygr layer Process

1 B

Z
=
= v
Z —
58 -
' CK .
YN + A > e
Pl ®)
A el
2
2]
— D E
£ :
A'fti.‘e = & | Inform process
e < | andsend data
4 in the queue
D plus EOF
z5l 0020 T >
=2
ACK '
B =
&<
,Q g
g =
=< Passive
|
2MSL = .o close
timer TN .
e 3 <3
=<
o=
@
Time-out
Y |
Time Time
Client States Server States

TCP/IP Protocol Suite 108

Figure 15.16 Transition diagram for a common scenario

TIME-WAIT

FIN+ACK/

FIN-WAIT-1

—— G

Time-out / ACK

|

Active open / SYN

SNY-SENT

SYN +ACK/ACK

close / FIN

C

TCP/IP Protocol Suite

ESTABLISHED

lient States

---------- CLOSED -
ACK/—

 Passive open /—
LAST-ACK

Close /TIN "

CLOSE- WAIT

LISTEN

1 SYN/SYN +ACK
SYN-RCVD

Server States

109

Figure 15.17 Time line for a common scenario

TCP/IP Protocol Suite

Y

Time

o
o
[)]
o
A]
m
ac|
=
é Data a
= Transfer %
A L
Active &3 %
o _C_l‘i's_e_ == = Inform and
2! send data
84} .
in the queue
N e e bl >
Z =)
et o= Passive
tmer © close
¢ FIN+ACK 711
4 .
> < ZL‘) E“‘)
== <=
--->
Time-out m
Client States
Y

Server States T
1me

110

Figure 15.18 Simultaneous open

Transport
layer

E [

Process

Active

=]
=)
=
=
o

SYN

SYN
-SENT

ESTABLISHED

SYN-
RCVD

Time

TCP/IP Protocol Suite

YN

SYN +AC

ESTABLISHED

Transport
layer

|

Process

—h

SYN
-SENT

SYN-
RCVD

Active

Time

111

Figure 15.19 Simultaneous close

Process Trirll;grort Trirll;grort Process
]] =
Active IE ESTABLISHED ESTABLISHED DU Active
close L - _c_ltls_e
T 20
Z5 £3
b £
-a wn
2MSL o 2 2MSL
timer O © timer
e =)
b m e
52 =<
== =
-———) (----
Time-out Time-out
A 4 A 4
Time Time

TCP/IP Protocol Suite 112

Figure 15.20 Denying a connection

Client Server

Process Tri{l;gro it Tr?él;é)ro It Process
| | =
a a
=] =
Active 5 - Passive
open) - open
............) <.-----------
_ @
Z =
- Z
CIIJ —
Z
>
2 A
@)
N
=
=) :
= @)
= Server state
®
) ¥) A 4
Time Client states Time

TCP/IP Protocol Suite 113

Figure 15.21 Aborting a connection

Server

Transport Transport
Process layer layer Process
= | 1 =
[~_] ESTABLISHED ESTABLISHED

a ____121;1})1___

: 2

~ 2

@]
Y Client states Server states Yy

Time Time

TCP/IP Protocol Suite 114

15-6 WINDOWS IN TCP

Before discussing data transfer in TCP and the
Issues such as flow, error, and congestion control,
we describe the windows used in TCP. TCP uses
two windows (send window and receive window)
for each direction of data transfer, which means
four windows for a bidirectional communication.
To make the discussion simple, we make an
assumption that communication is only
unidirectional; the bidirectional communication
can be inferred using two unidirectional
communications with piggybacking.

TCP/IP Protocol Suite 115

Topics Discussed in the Section

v’ Send Window
v' Receive Window

TCP/IP Protocol Suite 116

Figure 15.22 Send window in TCP

First Next byte
outstanding to send to)
b Timer .

EQIREE
Bytes that cannot be
Bytes that are acknowledged Outstanding bytes Bytes that can be sent sent until the right edge
(can be purged from buffer) | (sent by not acknowledged) (Usable window) moves to the right
) Send window size (advertised by the receiver) .
a. Send window
Left wall Right wall
Closes Shrinks Opens

S T N L) X I T T T E T R

b. Opening, closing, and shrinking send window

TCP/IP Protocol Suite 117

Figure 15.23 Receive window in TCP

Next byte Next byte
to be pulled expected to
by the process receive
} -
ees 200]201 eee [260]261 s 300[301 eeo

Bytes received,

and acknowledged Bytes that can be
Bytes that have already waiting to be received from sender Bytes that cannot be
pulled by the process L consumed by process Receive window size (rwnd) | received from sender

Allocated buffer R

o
<

a. Receive window and allocated buffer

Lett wall Right wall
’—} ’—} Opens
Closes
. ees 200]201 oo o 260 [261 coe 300[301 eee

b. Opening and closing of receive window

TCP/IP Protocol Suite 118

15-7 FLOW CONTROL

As discussed in Chapter 13, flow control
balances the rate a producer creates data with
the rate a consumer can use the data. TCP
separates flow control from error control. In this
section we discuss flow control, ignoring error
control. We temporarily assume that the logical
channel between the sending and receiving TCP
Is error-free. Figure 15.24 shows unidirectional
data transfer between a sender and a receiver;
bidirectional data transfer can be deduced from
unidirectional one as discussed in Chapter 13.

TCP/IP Protocol Suite 119

Topics Discussed in the Section

v’ Opening and Closing Windows
v’ Shrinking of Windows
v Silly Window Syndrome

TCP/IP Protocol Suite 120

Figure 15.24 TCP/IP protocol suite

Sender Receiver
Apolicat; =3 Data flow Aoplicati
pplication pplication
layer —) Flow control feedback Consumer layer
Messages Flow control Messages
are pushed 9 @ feedback 9 are pulled
Transpor o] [—
ayer
y Consumer layer

Segements are pushed

(4]

Flow control feedback

TCP/IP Protocol Suite 121

Figure 15.25 An example

of flow control

Note: We assume only unidirectional

communication from client to server.

Therefore, only one window at each
side 1s shown.

\‘/ i Client SYN Server
{E@f’ ¢ seqNo: 100 > rwnd = 800
SYNFACK 10T gy 1
Size = 800 seqNo: 1000] AN 00
__________ . ackNo: 101 Receive window is set
Tol gy, | rwnd: 800
Send window is set ALk
end window is se 2ckNo- 1001
Size = 800 el
301 001 T : Data _
— O— ol | p——
Sender sends 200 bytes o S for 3or [901 .
. ACK
_____ Size = 600 e ?&1;1:1106(3)81 200 bytes received, window closes.
T IOV I 1) l
Bytes acknowledged, window closes.
Size = 600
- Bor _Je0l JY01 T Data
seqNo: 301 N =
Sender sends 300 bytes. @_Data: 300 bytes > rwnd =400
ACK L 1001_____;]
SrEp =4l 4_?;1:11(\10488 ! —&) 300 bytes received, 100 bytes consumed.
TN 001 IOl _____ rwind = 600
Window closes and opens ACK L 1201
Size = 600 ackNo: 601 3 .
___________ rwnd: 600 200 bytes consumed, window opens
L 1201
. °
Window opens. : -
.
L

TCP/IP Protocol Suite

122

Example 15.2

Figure 15.26 shows the reason for the mandate in window
shrinking. Part a of the figure shows values of last
acknowledgment and rwnd. Part b shows the situation in
which the sender has sent bytes 206 to 214. Bytes 206 to
209 are acknowledged and purged. The new advertisement,
however, defines the new value of rwnd as 4, in which 210 +
4 < 206 + 12. When the send window shrinks, it creates a
problem: byte 214 which has been already sent is outside
the window. The relation discussed before forces the
receiver to maintain the right-hand wall of the window to be
as shown in part a because the receiver does not know
which of the bytes 210 to 217 has already been sent. One
way to prevent this situation is to let the receiver postpone
Its feedback until enough buffer locations are available In
Its window. In other words, the receiver should wait until

more bytes are consumed by its process.
TCP/IP Prototol Suite 123

Figure 15.26 Example 15.2

| [ast advertised rwnd = 12 |

Last advertised
ackNo = 206

a. The window after the last advertisement

New advertised
| rwnd =4 |

>

rs

TS 306 37 308 309 [Lo R R B2 s [216 2 i v

New advertised
ackNo =216

b. The window after the new advertisement; window has shrunk

TCP/IP Protocol Suite 124

15-8 ERROR CONTROL

TCP is areliable transport layer protocol. This
means that an application program that
delivers a stream of datato TCP relies on TCP
to deliver the entire stream to the application
program on the other end in order, without
error, and without any part lost or duplicated.
Error control in TCP is achieved through
the use of three tools: checksum,
acknowledgment, and time-out.

TCP/IP Protocol Suite

125

Topics Discussed in the Section

v’ Checksum

v’ Acknowledgment

v Retransmission

v’ Out-of-Order Segments

v’ FSMs for Data Transfer in TCP
v Some Scenarios

TCP/IP Protocol Suite 126

|: o

Note

ACK segments do not consume

sequence numbers and
are not acknowledged.

TCP/IP Protocol Suite 127

‘ Note I

Data may arrive out of order and be
temporarily stored by the receiving TCP,

but TCP guarantees that no out-of-order
data are delivered to the process.

TCP/IP Protocol Suite 128

‘ Note I

TCP can be best modeled as a

Selective Repeat protocol.

TCP/IP Protocol Suite 129

Figure 15.27 Simplified FSM for sender site

A chunk of bytes accepted from the
process.

Make a segment (seqNo = S,,).
Store a copy of segment in ﬂ?e

Time-out occured.

Resend the first segement
in the queue.
Reset the timer.

Set S, = S;, + data length.

queue and send it..

If 1t 1s the first segment in the queue,
start the timer.

Note:
[AH calculations are in]

modulo 23 2.

l

A corrupted __ Ready
ACK arrived.
Discard 1t.

A duplicate ACK arrived.

Set dupNo = dupNo + 1.

If (dupNo = 3) resend the
segment 1n front of the queue,
restart the timer, and

set dupNo = 0.

TCP/IP Protocol Suite

Window full? H

Time-out occured.

Resend the segement
in front of the queue.
Reset the timer.

] T
An error-free ACK arrived that

acknowledges the segement in
fron of the queue.

Slide the window (S¢ = ackNo) and
adjust window size.

Remove the segment from the queue.

If (any segment left in the queue),
restart the timer.

Blocking A corrupted
ACK arrived.
Discard 1t.
A duplicate ACK arrived.

Set dupNo = dupNo + 1.
If (dupNo = 3) resend the
segment in front of the queue,

restart the timer, and
set dupNo = 0.

130

Figure 15.28 Simplified FSM for the receiver site

An expected error-free segment arrived.

Buffer the message.

Note: R;,, = R, + data length.
All calculations are in If the ACK-delaying timer 1s running, stop
modulo 2°<. the timer and send a cummulative ACK. Else,

start the ACK-delaying timer.

A request for delivery of l . .
k bytes of data from 4 Y ACK-delaying timer expired.
process came Send the delayed ACK.
Deliver the data. Ready
Slide the window and adjust
window size. An error-free, but out-of

1 order segment arrived

Store the segment 1f not duplicate.

Send an ACK with ackNo equal

An error-free duplicate segment = (0 l3 FEET o ML el i
or an error-free segment with ﬁj segment (duplicate ACK).
sequence number ouside
window arrived

A corrupted segment arrived

- Discard the segment.
Discard the segment. -

Send an ACK with ackNo equal
to the sequence number of expected
segment (duplicate ACK).

TCP/IP Protocol Suite 131

Figure 15.29 Normal operation

ACK-delaying
timer

Start

500 ms

Time-out

Start

<500 ms

Stop

TCP/IP Protocol Suite

Client

Seq:]201__1400
ACK: 400

Seq: 40015000

- = ck: 1401
Ack: 5001
. =
=T
- Ack: 7001
T‘irme

132

Figure 15.30 Lost segment

@ . Client Server | F ,
RTO = > Rgc ?%VGI‘
Start Seq: 501-600 uffer
® Ack: x 00
Seq: 601=700
Ack: x > —1 |
Stop (P) - - - - —=H Ack: 701
______ Seq: 701-38
Start . q ek x 00 | ot
Seq: 80T-900 Rule 4
. —"> <“----
Ack: x Ack: 701 !
R . Out of order
esen
Rule 5
: Seq: 701—= 800
Time-out/restart . --——) q . # - -==-
Adk x Ack: 901
Stop @ === -V |

Time Time

TCP/IP Protocol Suite 133

|: o

Note

The recelver TCP delivers only ordered

data to the process.

TCP/IP Protocol Suite 134

Figure 15.31 Fast retransmission

Server)
RTO timer Rgcgver
Seq: T0I-200 utier
Start q
. Ack: x > |
Seq: 201-300
N Ack: x = <= Ack: 301 []] |
Stop Original @— S0
eq: 301400
Lost
Seq: 401-3500
Ack:x =D [TT1 |
First Ack: 301
] o—
duplicate Seq-50T=600 [T] - |
Adex [o O]
Second & ’
duplicate S
eq: 601-700
EEOTTO0 |y, (I
. All in order
Third
duplicate
Fast Seq: 301400
Restart. retransmit Ack: x
Resent *__-
Stop@ m
Time Ti;;'le

TCP/IP Protocol Suite

135

Figure 15.32 Lost acknowledgment

Server

Seq: 50T=600
S q
tart . Ack: x

Seq: 601700
Ack: x

Y_«-\ ACk'. 701

lost

Seq: 701-800
Ack: x

b4

Seq: 801-900
Ack: x Ack: 901 b—

Stop CD ; !

Time Time

TCP/IP Protocol Suite 136

Figure 15.33 Lost acknowledgment corrected by resending a segment

Restart.____>

Stop CD(----

Time

TCP/IP Protocol Suite

.
Client Server
Seq: 501-600
Ack: x >
Seq: 601-=700]
AR Ack: 701
Lost
Seq: 501-600
e = Rule 6
Resent = Ack: 701 -
Time
137

‘ Note I

Lost acknowledgments may create

deadlock if they are not
properly handled.

TCP/IP Protocol Suite 138

15-9 CONGESTION CONTROL

We discussed congestion control in Chapter 13.
Congestion control in TCP is based on both open
loop and closed-loop mechanisms. TCP uses a
congestion window and a congestion policy that
avoid congestion and detect and alleviate
congestion after it has occurred.

TCP/IP Protocol Suite 139

Topics Discussed in the Section

v’ Congestion Window
v’ Congestion Policy

TCP/IP Protocol Suite 140

Figure 15.34 Slow start, exponential increase

—3 Segment
—> ACK

| | | Sender Receiver | |

1
] <---
cwnd
RTT
2 4/
I <---L
cwnd _
RTT
4
I I T 1 <---L
CWIld \
RTT
8 ‘
C I T T T T T T 1 «<€--- ",
cwnd Time Time

TCP/IP Protocol Suite 141

‘ Note I

In the slow start algorithm, the size of
the congestion window increases

exponentially until it reaches a
threshold.

TCP/IP Protocol Suite 142

Figure 15.35 Congestion avoidance, additive increase

| | | Sender Recerver | | |
1=4

T <--- —> Segment
cwnd —> ACK
—_—
RTT e
1+1
CI T 1T 1T 1€--- —F
cwnd
—l——
RIT — —]
M
1+2
L1 T 1T 1 | |<€=== —
cwnd
——
—
RTT e
—-‘__-——.‘_-
1+3
| | I | |] | |l<€--- -
cwnd v v
Time Time

TCP/IP Protocol Suite 143

‘ Note I

In the congestion avoidance algorithm
the size of the congestion window

Increases additively until
congestion Is detected.

TCP/IP Protocol Suite 144

Figure 15.36 TCP Congestion policy summary

ssthresh = 1/2 window Connection
cwnd — 1 MSS establjhment
=% - Time-out Slow start 3 dX%&E ate -
Congestion -85 I Congestion
cwnd > ssthresh

ssthresh =1/2 window
cwnd = ssthresh

. Congestion 3 duplicate
- Time-out - ACKs -
Congestion avoidance Congestion

Connection ssthresh =1/2 window
termination cwnd = ssthresh

TCP/IP Protocol Suite 145

Figure 15.37 Congestion example

cwnd

24
22
20
18
16
14
12
10
08
06
04

J
26

\

1T T 17T 1T 11

02

SS: Slow Start
Al: Additive Increase
MD: Multiplicative Decrease

Threshold =16

Time-out

3 ACKs

-
Si Al

Threshold =10

MD

Al
AI e e

TCP/IP Protocol Suite

g 9 10 11 12 13 14 15 16

146

15-10 TCP TIMERS

To perform its operation smoothly, most TCP
Implementations use at least four timers as shown
In Figure 15.38 (slide 83).

TCP/IP Protocol Suite 147

Topics Discussed in the Section

v
v
v

Retransmission Timer
Persistence Timer

Keepalive Timer

v TIME-WAIT Timer

TCP/IP Protocol Suite

148

Figure 15.38 TCP timers

| Timers I
| | l |
| Retransmission I ‘ Persistence I | Keepalive I | TIME-WAIT I

TCP/IP Protocol Suite 149

Note

|: o

In TCP, there can be only one RTT

measurement in progress at any time.

TCP/IP Protocol Suite 150

Example 15.3

Let us give a hypothetical example. Figure 15.39 shows
part of a connection. The figure shows the connection

establishment and part of the data transfer phases.

1. When the SYN segment is sent, there is no value for
RTTM, RTTS, or RTTD. The value of RTO is set to 6.00
seconds. The following shows the value of these

variable at this moment:
RTO =6

2. When the SYN+ACK segment arrives, RTTM s
measured and is equal to 1.5 seconds.

RTTy =1.5
RTTg =15

RTTp =(1.5)/2 =0.75
RTO =15 +4 x0.75 = 4.5

TCP/IP Protocol Suite 151

Example 15.3 Continued

3. When the first data segment is sent, a new RTT

measurement starts. No RTT measurement starts for the
second data segment because a measurement IS
already in progress. The arrival of the last ACK segment
IS used to calculate the next value of RTTM. Although
the last ACK segment acknowledges both data
segments (cumulative), its arrival finalizes the value of
RTTM for the first segment. The values of these
variables are now as shown below.

RTTy = 2.5
RTTg = 7/8 X1.5 + (1/8) X 2.5 = 1.625

RTTy, =3/4 (7.5) + (1/4) X |1.625 — 2.5| = 0.78
RTO =1.625+4x0.78 =4.74

TCP/IP Protocol Suite 152

Figure 15.39 Example 15.3

TCP/IP Protocol Suite

D Sender

SYN

Recerver | |

—] Seq: 1400 Ack:

SYN +ACK

«— Seq: 4000 Ack: 1401

ACK

Seq: 1400 Ack: 4001 |-

Data

Seq: 1401 Ack: 4001 |

Data: 1401-1500

Data

Seq: 1501 Ack: 4001

Data: 1501-1600

ACK

RTTyf = RTTg =

RTTp) = RTO = 6.00

1.50s
RTTyp=1.5 RTTg=1.50
RITp=0.75 RTO =4.50
2.50s
RTTM =2.50 RTTS =1.625 B
RTTH=0.78 RTO = 4.74 Y
Time

Seq: 4000 Ack: 1601

Time

153

‘ Note I

TCP does not consider the RTT of a

retransmitted segment in its
calculation of a new RTO.

TCP/IP Protocol Suite 154

Example 15.4

Figure 15.40 is a continuation of the previous example.
There is retransmission and Karn’s algorithm is applied.

The first segment in the figure is sent, but lost. The RTO
timer expires after 4.74 seconds. The segment s
retransmitted and the timer is set to 9.48, twice the previous
value of RTO. This time an ACK is received before the time-
out. We wait until we send a new segment and receive the
ACK for it before recalculating the RTO (Karn’s algorithm).

TCP/IP Protocol Suite 155

Figure 15.40 Example 15.4

RTTy=2.50 RTTg=1.625 .§t_a1;t_k Seq- 163 aik: 3001
RTTD =0.78 RTO =4.74 i Data: 1601-1700
Values from previous example Time-out Data Lost
CD N | Seq: 1601 Ack: 4001
RTO =2 x 4.74=9.48 Data: 16011700
Exponential Backoff of RTO . resent
>
ACK
RTO =2 x 4.74 =9.48 Stop : k: 1701
No change, Karn's algorithm Q')- 7 Data Seq: 400 =2]
Start Seq: 1701 Ack: 400]
Data: 1701-1800
o
<
RTTy=4.00 RTTg=1.92 N ALK 1 }—
M~ T s— 1. . —<G=={ Seq: 4000 Ack: 1801
RTTp =1.105 RTO = 6.34 Stop = Y
New values based on new RTTy, Time Time

TCP/IP Protocol Suite 156

User Datagram
Program

(UDP)

TCP/IP Protocol Suite 157

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

OBJECTIVES:

 To introduce UDP and show its relationship to other protocols in
the TCP/IP protocol suite.

1 To explain the format of a UDP packet and discuss the use of
each field in the header.

] To discuss the services provided by the UDP such as process-to-
process delivery, multiplexing/demultiplexing, and queuing.

 To show how to calculate the optional checksum and the sender
the needs to add a pseudoheader to the packet when calculating
the checksum.

J To discuss how some application programs can benefit from the
simplicity of UDP.

J To briefly discuss the structure of the UDP package.

TCP/IP Protocol Suite 158

Chapter
Outline

TCP/IP Protocol Suite

14.1 Introduction
14.2 User Datagram
14.3 UDP Services
14.4 UDP Application
14.5 UDP Package

159

14-1 INTRODUCTION

Figure 14.1 shows the relationship of the User Datagram Protocol (UDP) to
the other protocols and layers of the TCP/IP protocol suite: UDP is located
between the application layer and the IP layer, and serves as the
intermediary between the application programs and the network operations.

TCP/IP Protocol Suite 160

Figure 14.1 Position of UDP in the TCP/IP protocol suite

Ap%)lication
ayer

Transport
Tayer SCTP TCP UDP
IGMP || ICMP
Network
layer IP

ARP

Dellta link |
ayet —— Underlyin L%N or WAN

Physical technology |
layer

TCP/IP Protocol Suite 161

14-2 USER DATAGRAM

UDP packets, called user datagrams, have a fixed-size header of 8 bytes.
Figure 14.2 shows the format of a user datagram.

TCP/IP Protocol Suite 162

Figure 14.2 User datagram format

8 to 65,535 bytes

A 4

l: 8 bytes

{-I Header Data

a. UDP user datagram

0 16 31

Source port number Destination port number

Total length Checksum

b. Header format

TCP/IP Protocol Suite 163

Example 14.1

The following is a dump of a UDP header in hexadecimal
format.

CB84000D001C001C

a. What is the source port number?

b. What is the destination port number?

c. What is the total length of the user datagram?

d. What is the length of the data?

e. Is the packet directed from a client to a server or vice
versa?

f. What is the client process?

TCP/IP Protocol Suite 164

Example 14.1 Continued

Solution

a. The source port number is the first four hexadecimal
digits (CB84),, or 52100.

b. The destination port number is the second four
hexadecimal digits (000D),, or 13.

c. The third four hexadecimal digits (001C),, define the
length of the whole UDP packet as 28 bytes.

d. The length of the data is the length of the whole packet
minus the length of the header, or 28 — 8 = 20 bytes.

e. Since the destination port number is 13 (well-known
port), the packet is from the client to the server.

f. The client process is the Daytime (see Table 14.1).

TCP/IP Protocol Suite 165

14-3 UDP Services

We discussed the general services provided by a transport layer protocol in
Chapter 13. In this section, we discuss what portions of those general
services are provided by UDP.

TCP/IP Protocol Suite 166

Topics Discussed in the Section

v’ Process-to-Process Communication
v’ Connectionless Service

v’ Flow Control

v’ Error Control

v’ Congestion Control

v’ Encapsulation and Decapsulation
v’ Queuing

v’ Multiplexing and Demultiplexing

v’ Comparison between UDP and Generic Simple
Protocol

TCP/IP Protocol Suite 167

Table 14.1 Well-known Ports used with UDP

Port Protocol Description
7 Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received
11 Users Active users
13 Daytime Returns the date and the time
17 Quote Returns a quote of the day
19 Chargen Returns a string of characters
53 Domain Domain Name Service (DNS)
67 Bootps Server port to download bootstrap information
68 Bootpc Client port to download bootstrap information
69 TFTP Trivial File Transfer Protocol
111 RPC Remote Procedure Call
123 NTP Network Time Protocol
161 SNMP Simple Network Management Protocol
162 SNMP Simple Network Management Protocol (trap)

TCP/IP Protocol Suite

168

Figure 14.3 Pseudoheader for checksum calculation

=
v
=
o
>
=
=
=
-
V
N
o

32-bit source IP address

32-bit destination IP address

All Os 8-bit protocol

16-bit UDP total length

H Source port address Destination port address
% 16 bits 16 bits
an UDP total length Checksum

16 bits 16 bits

{ (Padding must be added to make the data a multiple of 16 bits)

Data

/

TCP/IP Protocol Suite

169

Example 14.2

Figure 14.4 shows the checksum calculation for a very
small user datagram with only 7 bytes of data. Because the
number of bytes of data is odd, padding is added for
checksum calculation. The pseudoheader as well as the
padding will be dropped when the user datagram is
delivered to IP (see Appendix F).

TCP/IP Protocol Suite 170

Figure 14.4 Checksum calculation for a simple UDP user datagram

All 0s

153.18.8.105

171.2.14.10

1087

15

~

et

TCP/IP Protocol Suite

10011001
00001000
10101011
00001110
00000000
00000000
00000100
00000000
00000000
00000000
01010100
01010011
01001001
01000111

00010010
01101001
00000010
00001010
00010001
00001111

00111111

00001101
00001111

00000000
01000101
01010100
01001110
00000000

10010110
01101001

11101011
00010100

153.18

8.105

171.2

14.10

0and 17

15

1087

13

15

0 (checksum)
Tand E
Sand T
Iand N

G and 0 (padding)

Sum
Checksum

171

Example 14.3

What value is sent for the checksum in one of the following
hypothetical situations?

a. The sender decides not to include the checksum.

b. The sender decides to include the checksum, but the
value of the sum is all 1s.

c. The sender decides to include the checksum, but the
value of the sum is all 0s.

TCP/IP Protocol Suite 172

Example 14.3 Continued

Solution
a. The value sent for the checksum field is all 0Os to show
that the checksum is not calculated.

b. When the sender complements the sum, the result is all
0s; the sender complements the result again before
sending. The value sent for the checksum is all 1s. The
second complement operation is needed to avoid
confusion with the case in part a.

c. This situation never happens because it implies that the
value of every term included in the calculation of the
sum is all Os, which is impossible; some fields in the
pseudoheader have nonzero values (see Appendix D).

TCP/IP Protocol Suite 173

Figure 14.5 Encapsulation and decapsulation

Sender Process Receiver Process

Message

‘ Message
(UDP |UDP data UDP UDI;' P
| fea er‘ ! header a4t
- | IP data | T H;' o
cader ‘ ! header
1eader header rame

S 9

a. Encapsulation b. Decapsulation

TCP/IP Protocol Suite 174

Figure 14.6 Queues in UDP

Daytime Daytime
client server

iy

—_—
—_—
—_—
—_——
—_——
-
—
——

Outgoing l ‘ Incoming Outgoing l ‘ Incoming

queue queue queue queue
Port 13 Port 13 Port 52000 Port 52000
UDP uDP

TCP/IP Protocol Suite 175

Figure 14.7 Multiplexing and demultiplexing

Processes Processes
UDP UDP
(Multiplexer) (Demultiplexer)
IP IP

S o P

TCP/IP Protocol Suite 176

‘Note I
UDP Is an example of the
connectionless simple protocol we

discussed in Chapter 13 with the
exception of an optional checksum
added to packets for error detection.

TCP/IP Protocol Suite

177

14-4 UDP APPLICATION

Although UDP meets almost none of the criteria we mentioned in Chapter 13
for a reliable transport-layer protocol, UDP is preferable for some
applications. The reason is that some services may have some side effects
that are either unacceptable or not preferable. An application designer needs
sometimes to compromise to get the optimum.

TCP/IP Protocol Suite 178

Topics Discussed in the Section

v UDP Features
v’ Typical Applications

TCP/IP Protocol Suite 179

Example 14.4

A client-server application such as DNS (see Chapter 19)
uses the services of UDP because a client needs to send a
short request to a server and to receive a quick response
from it. The request and response can each fit in one user
datagram. Since only one message Is exchanged in each
direction, the connectionless feature is not an issue; the
client or server does not worry that messages are delivered
out of order.

TCP/IP Protocol Suite 180

Example 14.5

A client-server application such as SMTP (see Chapter 23),
which is used in electronic mail, cannot use the services of
UDP because a user can send a long e-mail message,
which may include multimedia (images, audio, or video). If
the application uses UDP and the message does not fit in
one single user datagram, the message must be split by the
application into different user datagrams. Here the
connectionless service may create problems. The user
datagrams may arrive and be delivered to the receiver
application out of order. The receiver application may not
be able to reorder the pieces. This means the
connectionless service has a disadvantage for an
application program that sends long messages.

TCP/IP Protocol Suite 181

Example 14.6

Assume we are downloading a very large text file from the
Internet. We definitely need to use a transport layer that
provides reliable service. We don’t want part of the file to
be missing or corrupted when we open the file. The delay
created between the delivery of the parts are not an
overriding concern for us; we wait until the whole file is
composed before looking at it. In this case, UDP is not a
suitable transport layer.

TCP/IP Protocol Suite 182

Example 14.7

Assume we are watching a real-time stream video on our
computer. Such a program is considered a long file; it Is
divided into many small parts and broadcast in real time.
The parts of the message are sent one after another. If the
transport layer is supposed to resend a corrupted or lost
frame, the synchronizing of the whole transmission may
be lost. The viewer suddenly sees a blank screen and
needs to wait until the second transmission arrives. This is
not tolerable. However, if each small part of the screen is
sent using one single user datagram, the receiving UDP
can easily ignore the corrupted or lost packet and deliver
the rest to the application program. That part of the screen
IS blank for a very short period of the time, which most
viewers do not even notice. However, video cannot be
viewed out of order, so streaming audio, video, and voice
applications that run over UDP must reorder or drop
frames that are out of sequence.

TCP/IP Protocol Suite 183

14-5 UDP PACKAGE

To show how UDP handles the sending and receiving of UDP packets, we
present a simple version of the UDP package.

We can say that the UDP package involves five components: a control-

block table, input queues, a control-block module, an input module, and an
output module.

TCP/IP Protocol Suite 184

