Cryptology for IoT Modules M4, M7, M9 Session of 27th April, 2022. M4.3 Briefing to the session M4.4 Introduction to the ciphers: Substitution, Transposition and mixed ciphers M4.5 Methodology using Cryptool Prof.: Guillermo Botella # **Cryptology for IoT** Modules M4, M7, M9 Session of 27th April, 2022. M4.3 Briefing to the session M4.4 Introduction to the ciphers: Substitution, Transposition and mixed ciphers M4.5 Methodology using Cryptool Prof.: Guillermo Botella # M4.3 Briefing of today - Starting with basic Cryptography and Cryptoanalysis - Slides and supplementary videos - We go to the rooms. Practical Session I. - Assignments (They will be specified when we start). - Work in groups (Same than usual) - First quiz at Socrative (around 25 questions) - Room number will be specified when we start - Individual work # **Cryptology for IoT** Modules M4, M7, M9 Session of 27th April, 2022. M4.3 Briefing to the session M4.4 Introduction to the ciphers: Substitution, Transposition and mixed ciphers M4.5 Methodology using Cryptool Prof.: Guillermo Botella # Organization of the M4.4 - Notation - Ciphers (families) - Substitution ciphers - Monoalphabetic Substitution - Polyalphabetic Substitution - Transposition Ciphers - Mixed Ciphers # Module 4: Cryptology for IoT #### **Formal Notation** plaintext ENCRYPTION Ciphertext DECODING Plaintext P ENCIPHERING C DECIPHERING P DECIPHERING DECIPHERING DECIPHERING DECIPHERING P - C = E(P) - P = D(C) E – encryption rule/algorithm D – decryption rule/algorithm - We need a cryptosystem, where: - P = D(C) = D(E(P)) - i.e., able to get the original message back #### **Representing Characters** Letters (uppercase only) represented by numbers 0-25 (modulo 26). Operations on letters: $$A + 2 = C$$ $X + 4 = B$ (circular!) #### **Basic Types of Ciphers** - Substitution ciphers - Letters of P replaced with other letters by E - Transposition (permutation) ciphers - Order of letters in P rearranged by E - Product ciphers Combine two or more ciphers to enhance the security of the cryptosystem #### **Substitution Ciphers** - Substitution Ciphers: - Letters of P replaced with other letters by E #### The Caesar Cipher (1) Change each letter to the third letter following it (circularly) $$A \rightarrow D, B \rightarrow E, \dots X \rightarrow A, Y \rightarrow B, Z \rightarrow C$$ • Can represent as a permutation π : $\pi(i) = i+3 \mod 26$ $\pi(0)=3, \pi(1)=4, ...,$ $$\pi(23)=26 \mod 26=0$$, $\pi(24)=1$, $\pi(25)=2$ Key = 3, or key = 'D' (because D represents 3) #### The Caesar Cipher (2) - Example - P (plaintext): HELLO WORLD - C (ciphertext): khoor zruog One key is used One letter substitutes the letter in P #### **Attacking a Substitution Cipher** - Exhaustive search - If the key space is small enough, try all possible keys until you find the right one - Cæsar cipher has 26 possible keys from A to Z OR: from 0 to 25 - Statistical analysis (attack) - Compare to so called 1-gram (unigram) model of English - 1-gram: It shows frequency of (single) characters in English - The longer the C, the more effective statistical analysis would be ## 1-grams (Unigrams) for English | а | 0.080 | h | 0.060 | n | 0.070 | t | 0.090 | |---|-------|---|-------|---|-------|---|-------| | b | 0.015 | i | 0.065 | 0 | 0.080 | u | 0.030 | | С | 0.030 | j | 0.005 | р | 0.020 | V | 0.010 | | d | 0.040 | k | 0.005 | q | 0.002 | W | 0.015 | | е | 0.130 | | 0.035 | r | 0.065 | X | 0.005 | | f | 0.020 | m | 0.030 | S | 0.060 | У | 0.020 | | g | 0.015 | | | | | Z | 0.002 | #### Statistical Attack - Step 1 - Compute frequency f(c) of each letter c in ciphertext - Example: c = 'khoor zruog' - 10 characters: 3 * 'o', 2 * 'r', 1 * {k, h, z, u, g} - f(c): $$f(g)=0.1$$ $f(h)=0.1$ $f(k)=0.1$ $f(o)=0.3$ $f(r)=0.2$ $f(u)=0.1$ $f(z)=0.1$ $f(c_i)=0$ for any other c_i - Apply 1-gram model of English - Frequency of (single) characters in English - 1-grams on previous slide #### Statistical Analysis – Step 2 - phi φ (i) correlation of frequency of letters in ciphertext with frequency of corresponding letters in English —for key i - For key i: $\varphi(i) = \sum_{0 < c < 25} f(c) * p(c i)$ - *c* representation of character (a-0, ..., z-25) c is a letter in ciphertext thus c-i is the letter in plaintext. - f(c) is frequency of letter c in ciphertext C - p(x) is frequency of character x in English - Intuition: sum of probabilities for words in P, if i were the key - Example: C = 'khoor zruog' (P = 'HELLO WORLD') f(c): f(g)=0.1, f(h)=0.1, f(k)=0.1, f(o)=0.3, f(r)=0.2, f(u)=0.1, f(z)=0.1 c: g-6, h-7, k-10, o-14, r-17, u-20, z-25 $\phi(i)=0.1p(6-i)+0.1p(7-i)+0.1p(10-i)+10.1p(20-i)+10.1p(25-i)$ #### Statistical Attack - Step 2a (Calculations) **□** Correlation φ (i) for $0 \le i \le 25$ | i | φ (i) | i | φ(i) | i | φ(i) | i | φ (i) | |---|--------------|----|--------|----|--------|----|--------------| | 0 | 0.0482 | 7 | 0.0442 | 13 | 0.0520 | 19 | 0.0315 | | 1 | 0.0364 | 8 | 0.0202 | 14 | 0.0535 | 20 | 0.0302 | | 2 | 0.0410 | 9 | 0.0267 | 15 | 0.0226 | 21 | 0.0517 | | 3 | 0.0575 | 10 | 0.0635 | 16 | 0.0322 | 22 | 0.0380 | | 4 | 0.0252 | 11 | 0.0262 | 17 | 0.0392 | 23 | 0.0370 | | 5 | 0.0190 | 12 | 0.0325 | 18 | 0.0299 | 24 | 0.0316 | | 6 | 0.0660 | | | | | 25 | 0.0430 | #### Statistical Attack – Step 3 (The Result) - Most probable keys (largest φ(i) values): - i = 6, $\varphi(i) = 0.0660$ - plaintext EBIIL TLOLA - i = 10, $\varphi(i) = 0.0635$ - plaintext AXEEH PHKEW - i = 3, $\varphi(i) = 0.0575$ - plaintext HELLO WORLD - i = 14, $\varphi(i) = 0.0535$ - plaintext WTAAD LDGAS - Only English phrase is for i = 3 - That's the key (3 or 'D') code broken #### Caesar's Problem - Conclusion: Key is too short - 1-char key monoalphabetic substitution - Can be found by exhaustive search - Statistical frequencies not concealed well by short key - They look too much like 'regular' English letters - Solution: Make the key longer - n-char key $(n \ge 2)$ polyalphabetic substitution - Makes exhaustive search much more difficult - Statistical frequencies concealed much better - Makes cryptanalysis harder ### **Other Substitution Ciphers** #### n-char key: - Polyalphabetic substitution ciphers - Vigenere Tableaux cipher #### Polyalphabetic Substitution - Examples - Flatten (difuse) somewhat the frequency distribution of letters by combining high and low distributions - Example 2-key substitution: ``` Key1: adgjmpsvybehk Key2: nsxchmrwbglqv NOPQRSTUVWXYZ Key1: nqtwzcfilorux Key2: afkpuzejotydi ``` Question: How Key1 and Key2 were defined? #### Polyalphabetic Substitution - Examples Example: ``` Key1:a d g j m p s v y b e h kKey2:n s x c h m r w b g l q vN O P Q R S T U V W X Y ZKey1:n q t w z c f i l o r u xKey2:a f k p u z e j o t y d i ``` #### Answer: ``` Key1 – start with 'a', skip 2, take next, skip 2, take next letter, ... (circular) Key2 - start with 'n' (2nd half of alphabet), skip 4, take next, skip 4, take next, ... (circular) ``` #### Polyalphabetic Substitution - Examples – Example: ``` ABCDEFGHIJKLM Key1: adgjmpsvybehk Key2: nsxchmrwbglqv NOPQRSTUVWXYZ Key1: nqtwzcfilorux Key2: afkpuzejotydi ``` - Plaintext: TOUGH STUFF - Ciphertext: ffirv zfjpm use n (=2) keys in turn for consecutive P chars in P - Note: - Different chars mapped into the same one: T, $O \rightarrow f$ - Same char mapped into different ones: $\mathbf{F} \rightarrow \mathbf{p}$, \mathbf{m} - 'f' most frequent in C (0.30); in English: f(f) = 0.02 << f(e) = 0.13 #### Vigenère Tableaux (1) Note: Row A – shift 0 (a->a) Row B – shift 1 (a->b) Row C – shift 2 (a->c) .. Row Z - shift 25 (a->z) #### Vigenère Tableaux (2) ``` Example ``` Key: **EXODUS** Plaintext P: YELLOW SUBMARINE FROM YELLOW RIVER Extended keyword (re-applied to mimic words in P): YELLOW SUBMARINE FROM YELLOW RIVER EXODUS EXODUSEXO DUSE XODUSE XODUS Ciphertext: cbxoio wlppujmks ilgq vsofhb owyyj #### Vigenère Tableaux (3) Example ... Extended keyword (re-applied to mimic words in P): YELLOW SUBMARINE FROM YELLOW RIVER EXODUS EXODUSEXO DUSE XODUSE XODUS Ciphertext: cbzoio wlppujmks ilgq vsofhb owyyj Answer: c from P indexes row c from extended key indexes column e.g.: row Y and column $e \rightarrow c$ row E and column $x \rightarrow b'$ row L and column o \rightarrow 'z' . . . #### **Transposition Ciphers (1)** - Rearrange letters in plaintext to produce ciphertext - Example 1a and 1b: Columnar transposition - Plaintext: HELLO WORLD - Transposition onto: (a) 3 columns: HEL **LOW** **ORL** **DXX** **XX** - padding - Ciphertext (read column-by column): - (a) **hlodeorxlwlx** - (b) hloolelwrd - What is the key? - Number of columns: (a) key = 3 and (b) key = 2 HE LL **OW** OR LD #### **Transposition Ciphers (2)** - Example 2: Rail-Fence Cipher - Plaintext: HELLO WORLD - Transposition into 2 rows (rails) column-by-column: **HLOOL** **ELWRD** - Ciphertext: hloolelwrd (Does it look familiar?) - What is the key? - Number of rails key = 2 #### **Product Ciphers** - A.k.a. combination ciphers - Built of multiple blocks, each is: - Substitution - Transposition - Example: two-block product cipher - $E_2(E_1(P, K_{E1}), K_{E2})$ - Product cipher might not necessarily be stronger than its individual components used separately! - Might not be even as strong as individual components # Identifying the type of a cipher - Not always possible without further knowledge about the cipher's origin and background - Voynich Manuscript a book of the 15th century encrypted and written using an unknown alphabet - To identify the type of the cipher we have seen to check out: - Frequency test component: visualizes the letter distribution of a given text - Friedman test component (kappa test) - The "Frequency test" (a.k.a Kappa test) component visualizes the letter distribution of a given texts - It uses the index of coincidence, which measures the unevenness of the cipher letter frequencies to break the cipher - The key length of a polyalphabetic cipher can be estimated by knowing two issues: - the <u>probability</u> (Kp) that any two randomly chosen source-language letters are the same (around 0.067 for English) - the <u>probability</u> (Kr) of a coincidence for a uniform random selection from the alphabet (1/26 = 0.0385 for English) The key length can be estimated as the following: $$\frac{\kappa_p - \kappa_r}{\kappa_o - \kappa_r}$$ From the observed coincidence rate (Ko): $$\kappa_o = rac{\sum_{i=1}^c n_i (n_i-1)}{N(N-1)}$$ Observed coincidence rate (Ko): $$\kappa_o = rac{\sum_{i=1}^c n_i (n_i-1)}{N(N-1)}$$ - c is the size of the alphabet (26 for English), N is the length of the text and ni to nc are the observed ciphertext letter frequencies, as integers - That is, however, only an approximation; its accuracy increases with the length of the text - It would, in practice, be necessary to try various key lengths that are close to the estimate - Computational tools to do (CT2): - IC is the probability of two randomly drawn letters out of a text to be identical - Useful to differentiate between plaintext (or transposed or monoalphabetic substituted text) and polyalphabetic encrypted texts - I.e example: - For English texts IC is 6.6% - For German texts IC is 7.8% Using simple monoalphabetic encryption, where a single letter is replaced by another letter, does not change the IC of the text Same applies to all transposition ciphers, since these do not change the text frequencies Homophone substitution also aims at changing the letter distribution of a text to become the uniform distribution, but here the IC is about 1/n, where n is the amount of different symbols in the text - Thus, having an IC close to 6.6% indicates that we have either a plaintext, a monoalphabetic substituted text, or a transposed text - On the other hand, having an IC close to 3.8% indicates that we have a polyalphabetic encrypted text - Clearly, the IC is more accurate having long ciphertexts - Identification of homophone ciphers can be done by counting the number of different used letters or symbols - If the number is above the expected alphabet size, it is probably a homophone substitution #### Criteria for "Good" Ciphers - "Good" depends on intended application - Substitution - C hides chars of P - If > 1 key, C dissipates high frequency chars - Transposition - C scrambles text => hides n-grams for n > 1 - Product ciphers - Can do all of the above - What is more important for your app? What facilities available to sender/receiver? - E.g., no supercomputer support on the battlefield #### Criteria for "Good" Ciphers - Commercial Principles of Sound Encryption Systems - 1. Sound mathematics - Proven vs. not broken so far - 2. Verified by expert analysis - Including outside experts - 3. Stood the test of time - Long-term success is not a guarantee - Still. Flows in many E's discovered soon after their release - Examples of popular commercial encryption (We will see them at next M7 module): - DES / RSA / AES DES = Data Encryption Standard RSA = Rivest-Shamir-Adelman AES = Advanced Encryption Standard (rel. new) ## **Cryptology for IoT** Modules M4, M7, M9 Session of 27th April, 2022. M4.3 Briefing to the session M4.4 Introduction to the ciphers: Substitution, Transposition and mixed ciphers M4.5 Methodology using Cryptool Prof.: Guillermo Botella ## Step-by-step approach methodology for classical ciphers First step → Make the cipher processable for CT2, so we create a digital transcription of the ciphertext Second step -> Identify the type of the cipher ■ Third step → Try to break the cipher ## Step-by-step approach methodology: i) Create a transcription - There are two ways to create a transcription of a ciphertext for CT2 - The first method is to manually assign to each ciphertext symbol a letter by hand outside of CT2, e.g. with Windows Notepad. - The transcription is saved as a simple text file - This file can be loaded into CT2 by using the FileInput component and then be processed further ## Step-by-step approach methodology: i) Create a transcription - The second method to create a transcription uses the CT2 component "Transcriptor" - With the transcriptor, a user can load a picture, e.g. a scan of a document ## Step-by-step approach methodology: i) Create a transcription - Finally, the transcriptor is able to output the complete transcription. - It supports the user in two different ways: - It automatically guesses, which symbol the user just had marked by showing the most likely symbols - It can be set to semiautomatic mode. In semiautomatic mode, it automatically marks all other symbols that are similar to the one just marked by the user Several analysis: Text frequency analysis Friedman test analysis Text frequency analysis. For that, CT2 contains a Frequency Test component It can be configured to show: - unigram distribution - bigram distribution - etc. - Example: Distribution of plain text. ("The Declaration of Independence" of the US) - The text follows the letter distribution of the English., i.e. the 'E' is the most frequent letter, the letters 'X', 'Q', and 'Z' are very rare - Distribution of cipher text. Same text encrypted with Vigenere cipher - Here, all letters are more or less equally distributed, showing the cryptanalyst that it is possibly a polyalphabetic substitution cipher Friedman test analysis. For that, CT2 contains a Friedman Test component With this test the key length (number of letters of a key word or phrase) of a polyalphabetic cipher can be calculated Friedman test analysis. For that, CT2 contains a Friedman Test component - Same text (plain text) - This text is possibly plaintext or a monoalphabetic substitution - The ciphertext could be transposed since the transposition does not change the letter distribution Friedman test analysis. - Friedman test analysis. - Same text (ciphertext) - Vigenere cipher - It shows that the given text is possibly ciphertext and polyalphabetic - The ciphertext could be transposed since the transposition does not change the letter distribution Friedman test analysis. - Friedman test analysis. - Additionally, it shows that the estimated 33 key length is about 9 - The component needs a provided IC (IC provided) which is used as a reference value for the analyzed IC (IC analyzed) ## Step-by-step approach methodology: iii) Break the cipher #### Break the cipher We use the help of different cryptanalysis components: - Monoalphabetic substitution cipher - Vigenere cipher - Columnar transposition cipher ## Step-by-step approach methodology: iii) Break the cipher #### Using the properly solver | Amalysis | | t Time: 1/21/20
sed Time: 00:00:27 | 18 8:28:57 PM | End Time:
Keys/second:
Current analy: | 1/21/2018 8:29:25 PM
10,119
ed keylength: 9 | | |----------|----|---------------------------------------|---------------|---|---|--| | | | Value | Key | Key Length | Text | | | | 1 | 8.91458977542657E | KEYWORD | 7 | THEDECLARATIONOFINDEPENDENCE | | | | 2 | 2.6544934610643BE | DKEKEOKEY | 9 | ABYPOFEGXVFSVMKZCLOLOENINQXV | | | | 3 | 2,65599400712501E | DOKEDOEO | 8 | AJSVPFKWSVFSCCUVDGHRPANNXYJE | | | I | 4 | 2.65713062562153E | DKEKODKEY | 9 | ABYPEGEGXVFSVCVZCLOLOEDYGXVE | | | Bestist | 5 | 2.6594617226191E+ | DKEKEODDO | 9 | ABYPOFLHHVFSVMKGDVOLOENNXYF | | | | 6 | 2.66189596613086E | DKEKEEDEO | 9. | ABYPOPAGHVFSVMUVCVOLOENXMX | | | | 7 | 2.66951117085202E | DKEKEO | 6 | ABYPOFLAROLICGUZCVOLOENNIRPS | | | | 8 | 2.67115879404954E | DKEDRDKEY | 9 | ABYWBQEGXYF5CZVZCLOLOLAYQXV | | | | 9: | 2.6840571659966E+ | DKKEO | 5 | ABSVEQEARKMMVMKGWZNHPEHXM | | | | 10 | 2,6865744018561E+ | DOKDEO | 6 | AISWOFLHLVLICNOGCVOSILNNXYJEC | | ## Step-by-step approach methodology: iii) Break the cipher #### Using solvers - The solver automatically tested every key length between 5 and 20 using hill climbing - Only about ten seconds are needed for the component to automatically break the cipher - The decrypted text is automatically outputted by the component and can be displayed by an TextOutput component # Step-by-step approach methodology: iii) Break the cipher #### Using solvers - All automatic cryptanalysis components have the same style of user interface - Besides start and end-time, the elapsed time for the analysis is shown - Furthermore, some components estimate the time for the remaining automatic analysis - Message in a bottle (US Civil War, 1863) - It was sent in a bottle by a Confederate commander at the 4th of July 1863 in Vicksburg to General Pemberton - It was broken by the retired CIA codebreaker David Gaddy in 2010 - We here use this message (221 letters) as our first real-world example for breaking classical ciphers with CT2 Message in a bottle (US Civil War, 1863) - Transcript (Message in a bottle) - Just using "Transcriptor" component or do it manually - Since the letters are written differently, the scanned image has only a low resolution, and the message contains ink spots, it was used manually SEAN WIEUIIUZH DTG CNP LBHXGK OZ BJQB FEQT XZBW JJOY TK FHR TPZWK PVU RYSQ VOUPZXGG OEPH CK UASFKIPW PLVO JIZ HMN NVAEUD XYF DURJ BOVPA SF MLV FYYRDE LVPL MFYSIN XY FQEO NPK M OBPC FYXJFHOHT AS ETOV B OCAJDSVQU M ZTZV TPHY DAU FQTI UTTJ J DOGOAIA FLWHTXTI QLTR SEA LVLFLXFO. - Cipher Identification (Message in a bottle) - First, we created a letter frequency - Cipher Identification (Message in a bottle) - First, we created a letter frequency - The distribution of letters indicated that the message is not encrypted with monoalphabetic substitution and possibly not transposed - Based on the more or less equal distribution of the letters we assume that the message is encrypted with a polyalphabetic cipher - Cipher Identification (Message in a bottle) - To further strengthen our assumption, we applied the Friedman test and calculated the IC ``` KeyLen = 5729.93228 IC_analyzed = 0.03834 IC_provided = 0.0667 Mode = polyalphabetic 87 characters, 4 lines 100 % ``` - Cipher Identification (Message in a bottle) - The IC equal to 0.03834 indicated that the message is possibly encrypted with a polyalphabetic cipher - The estimated length of the key is ≈ 5730, which is impossible for a text of only 221 letters - Cipher Identification (Message in a bottle) - Thus, the message is either encrypted with a running key cipher, meaning one of the two cases: - the key length is infinity - or the Friedman test just fails because of the short length of the message - Since we know that in the Civil War the Vigenere cipher was often used, we assumed it could be encrypted with it - Other possibilities would be a codebook or a homophone cipher - Cipher Identification (Message in a bottle) - Thus, the message is either encrypted with a running key cipher, meaning one of the two cases: - the key length is infinity - or the Friedman test just fails because of the short length of the message - Since we know that in the Civil War the Vigenere cipher was often used, we assumed it could be encrypted with it - Other possibilities would be a codebook or a homophone cipher - Cipher Break (Message in a bottle) - Using "Vigenere Analyzer" component to break it - We automatically test all key lengths between 1 and 20 | • | . • | | | | | | | |----------|-----|------------------|----------------------|---------------------------|--------------|---------------------------------|------------| | S | | | 1/22/2018 3:50:00 PM | End Time:
Keys/second: | | 1/22/2018 3:50:05 PM
286,222 | | | Analysis | | | 00:00:05 | | | | | | ¥ | | | | Current | analyzed key | length: | 20 | | | # | Value | Key | Key Length | | 1 | ext ext | | | 1 | 2961.54527050132 | MANCHESTERBLUFF | 15 | GENLPEMBER | TONYOUCANEXP | ECTNOHELPE | | | 2 | 3038.2004460357 | MANCHESTERBLUPZ | 15 | GENLPEMBER | TONOUUCANEXP | ECTNOHURF | | | 3 | 3241.10477872893 | MANCHESTLEBLUPZ | 15 | GENLPEMBXE | TONOUUCANEXP | EVGNOHURI | | | 4 | 3298.457165819 | MANCHEOLLEBLUFF | 15 | GENLPEQJXET | FONYOUCANEXT | //VGNOHELP | | | 5 | 3781.77629491449 | BDILPODRFUBLULIMEHLZ | 20 | RBSCHUBDDO | OTONSLUYGEMAE | PVVAWKEW | - Cipher Break (Message in a bottle) - The component displays a toplist of "best" decryptions based on a cost function that rates the quality of the decrypted texts - The higher the cost value (sum of n-gram probabilities of English language) the higher the place in the toplist Cipher Break (Message in a bottle) - Cipher Break (Message in a bottle) - Furthermore, the component shows the used keyword or pass phrase - With "MANCHESTERBLUFF" (15 letters), the message can be broken - The analysis run took 5 seconds on a standard desktop computer with 2.4 GHz - Borg Cipher (Vatican library, 17th century) - The Borg cipher is a 408 pages manuscript, from the 17th century located at the Biblioteca Apostolica Vaticana - It is written using special ciphertext symbols - Transcript (Borg Cipher) - We took the complete transcription - Took from (Aldarrab et al., 2018) - Nada Aldarrab, Kevin Knight, and Beata Megyesi. 2018. The Borg.lat.898 Cipher. http://stplingfil.uu.se/~bea/borg/ - Cipher Identification (Borg Cipher) - Cipher Identification (Borg Cipher) - Then, we applied the Friedman test on the ciphertext and computed the IC - Both indicated, that the Borg cipher is encrypted using the monoalphabetic substitution ``` KeyLen = 0.84001 IC_analyzed = 0.07208 IC_provided = 0.0667 Mode = monoalphabetic/cleartext 94 characters, 4 lines ``` - Cipher Breaking (Borg Cipher) - Thus, we finally used the Monoalphabetic Substitution Analyzer component | Local | | Start:
Elapsed: | | 1/22/2018 5:38:42 PM
00:00:08 | End: 1/22/2018 5:38:50 PM | |---------|---|--------------------|--------|---------------------------------------|--| | | # | Value | Attack | Key | | | | 0 | 3.99246 | G | ycalmentih pugrdbosz fyj qwkx | y calamenti thimi pulegi cardui benedic ti rc | | _ | 1 | 4.09066 | D | d mel rantif guhjc bosk p q v w x y z | d meleranti tfiri gulahi mejcui banacim ti jos | | Top Ten | 2 | 4.10200 | D | jakl mentiq pugrdbosv f wyhzcx | j aklkmenti tqimi pulegi akrdui benedia ti ro | | Τορ | 3 | 4.10353 | D | jakl mentiq pugrdbosv fwx hycz | j aklkmenti tqimi pulegi akrdui benedia ti ro | | | 4 | 4.10676 | D | abel to nmid pugrc fcshjk qvwc x | a beletonmi mditi pulogi bercui fonocib mi | | | 5 | 4.10836 | D | bmdl fentih pugrcvos jkqwayz x | b mdldfenti thifi pulegi mdrcui venecim ti ro | | | 6 | 4.11962 | D | bahljen tik pugrdmos q f v wyz c x | b ahlhjenti tkiji pulegi ahrdui menedia ti ros | - Cipher Breaking (Borg Cipher) - We tested different languages to be used by the analyzer - Latin produced the best results, since the original text is Latin - The analysis run took 8 seconds Cipher Breaking (Borg Cipher) ## **Cryptology for IoT** Modules M4, M7, M9 Session of 27th April, 2022. M4.3 Briefing to the session M4.4 Introduction to the ciphers: Substitution, Transposition and mixed ciphers M4.5 Methodology using Cryptool Prof.: Guillermo Botella